1,153 research outputs found

    Using utilization profiles in allocation and partitioning for multiprocessor systems

    Get PDF
    Journal ArticleThe problems of multiprocessor partitioning and program allocation are interdependent and critical to the performance of multiprocessor systems. Minimizing resource partitions for parallel programs on partitionable multiprocessors facilitates greater processor utilization and throughput. The processing resource requirements of parallel programs vary during program, execution and are allocation dependent. Optimal resource utilization requires that resource requirements be modeled as variable over time. This paper investigates the use of program profiles in allocating programs and partitioning multiprocessor systems. An allocation method is discussed. The goals of this method are to (1) minimize program execution time, (2) minimize t h e total number of processors used, (3) characterize variation in processor requirements over the lifetime of a program, (4) to accurately predict the impact on run time of the number of processors available at any point in time and (5) to minimize fluctuations in processor requirements to facilitate efficient sharing of processors between partitions on a partitionable multiprocessor. An application to program partitioning is discussed that improves partition run times compared to other methods

    DPOS: A metalanguage and programming environment for parallel processors

    Get PDF
    Journal ArticleThe complexity and diversity of parallel programming languages and computer architectures hinders programmers in developing programs and greatly limits program portability. All MIMD parallel programming systems, however, address common requirements for process creation, process management, and interprocess communication. This paper describes and illustrates a structured programming system (DPOS) and graphical programming environment for generating and debugging high-level MIND parallel programs. DPOS is a metalanguage for defining parallel program networks based on the common requirements of distributed parallel computing that is portable across languages, modular, and highly flexible. The system uses the concept of stratification to separate process network creation and the control of parallelism form computational work. Individual processes are defined within the process object layer as traditional single threaded programs without parallel language constructs. Process networks and communication are defined graphically within the system layer at a high level of abstraction as recursive graphs. Communication is facilitated in DPOS by extending message passing semantics in several ways to implement highly flexible message passing constructs. DPOS processes exchange messages through bi-directional channel objects using guarded, buffered, synchronous and asynchronous communication semantics. The DPOS environment also generates source code and provides a simulation system for graphical debugging and animation of the programs in graph form

    A communication-ordered task graph allocation algorithm

    Get PDF
    technical reportThe inherently asynchronous nature of the data flow computation model allows the exploitation of maximum parallelism in program execution. While this computational model holds great promise, several problems must be solved in order to achieve a high degree of program performance. The allocation and scheduling of programs on MIMD distributed memory parallel hardware, is necessary for the implementation of efficient parallel systems. Finding optimal solutions requires that maximum parallelism be achieved consistent with resource limits and minimizing communication costs, and has been proven to be in the class of NP-complete problems. This paper addresses the problem of static allocation of tasks to distributed memory MIMD systems where simultaneous computation and communication is a factor. This paper discusses similarities and differences between several recent heuristic allocation approaches and identifies common problems inherent in these approaches. This paper presents a new algorithm scheme and heuristics that resolves the identified problems and shows significant performance benefits

    Surface methane concentrations along the mid-Atlantic bight driven by aerobic subsurface production rather than seafloor gas seeps.

    Get PDF
    Author Posting. Ā© American Geophysical Union, 2020. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 125(5), (2020): e2019JC015989, doi:10.1029/2019JC015989.Relatively minor amounts of methane, a potent greenhouse gas, are currently emitted from the oceans to the atmosphere, but such methane emissions have been hypothesized to increase as oceans warm. Here, we investigate the source, distribution, and fate of methane released from the upper continental slope of the U.S. Midā€Atlantic Bight, where hundreds of gas seeps have been discovered between the shelf break and ~1,600 m water depth. Using physical, chemical, and isotopic analyses, we identify two main sources of methane in the water column: seafloor gas seeps and in situ aerobic methanogenesis which primarily occurs at 100ā€“200 m depth in the water column. Stable isotopic analyses reveal that water samples collected at all depths were significantly impacted by aerobic methane oxidation, the dominant methane sink in this region, with the average fraction of methane oxidized being 50%. Due to methane oxidation in the deeper water column, below 200 m depth, surface concentrations of methane are influenced more by methane sources found near the surface (0ā€“10 m depth) and in the subsurface (10ā€“200 m depth), rather than seafloor emissions at greater depths.This research was supported by DOE Grant (DEā€FE0028980) to J. K. and by DOEā€USGS Interagency Agreement DEā€FE0026195.2020-10-0

    Using carbon isotope fractionation to constrain the extent of methane dissolution into the water column surrounding a natural hydrocarbon gas seep in the northern Gulf of Mexico

    Get PDF
    Author Posting. Ā© American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Using carbon isotope fractionation to constrain the extent of methane dissolution into the water column surrounding a natural hydrocarbon gas seep in the northern gulf of Mexico. Geochemistry Geophysics Geosystems, 19(11), (2018); 4459-4475., doi:10.1029/2018GC007705.A gas bubble seep located in the northern Gulf of Mexico was investigated over several days to determine whether changes in the stable carbon isotopic ratio of methane can be used as a tracer for methane dissolution through the water column. Gas bubble and water samples were collected at the seafloor and throughout the water column for isotopic ratio analysis of methane. Our results show that changes in methane isotopic ratios are consistent with laboratory experiments that measured the isotopic fractionation from methane dissolution. A Rayleigh isotope model was applied to the isotope data to determine the fraction of methane dissolved at each depth. On average, the fraction of methane dissolved surpasses 90% past an altitude of 400 m above the seafloor. Methane dissolution was also investigated using a modified version of the Texas A&M Oil spill (Outfall) Calculator (TAMOC) where changes in methane isotopic ratios could be calculated. The TAMOC model results show that dissolution depends on depth and bubble size, explaining the spread in measured isotopic ratios during our investigations. Both the Rayleigh and TAMOC models show that methane bubbles quickly dissolve following emission from the seafloor. Together, these results show that it is possible to use measurements of natural methane isotopes to constrain the extent of methane dissolution following seafloor emission.This research was made possible by two grants from the Gulf of Mexico Research Initiative: Gulf Integrated Spill Response (GISR) Consortium (awarded to J. D. K. and S. A. S.) and Center for Integrated Modeling and Assessment of the Gulf Ecosystem (Cā€IMAGE) II (awarded to S. A. S.). Additional support was provided by the U.S. Department of Energy (DEā€FE0028980; awarded to J. D. K.). Data are publicly available through the Gulf of Mexico Research Initiative Information & Data Cooperative (GRIIDC). Methane concentration and isotopic ratio data can be found at https://data.gulfresearchinitiative.org/data/R1.x137.000:0025, and TAMOC model scripts and results are found at https://data.gulfresearchinitiative.org/data/R1.x137.000:0026. The coversion of methane isotopic ratio data used in this manuscript can be found at https://data.gulfresearchinitiative.org/data/R1.x137.000:0028. We want to thank the captain and crew of the E/V Nautilus and the operators of ROV Hercules and Argus during the GISR G08 cruise and Nicole Raineault for their outstanding support at sea. Acoustically identifying the bubble flare was managed by Andone Lavery, and support for collecting gas and water samples was provided by John Bailey. We also want to thank Sean Sylva for analytical assistance on shore, Inok Jun for helping create the sampling schematics, and David Brinkā€Roby for helping create the sample site map.2019-04-2

    Light Rare Earth Element Depletion During Deepwater Horizon Blowout Methanotrophy

    Get PDF
    Rare earth elements have generally not been thought to have a biological role. However, recent work has demonstrated that the light REEs (LREEs: La, Ce, Pr, and Nd) are essential for at least some methanotrophs, being co-factors in the XoxF type of methanol dehydrogenase (MDH). We show here that dissolved LREEs were significantly removed in a submerged plume of methane-rich water during the Deepwater Horizon (DWH) well blowout. Furthermore, incubation experiments conducted with naturally methane-enriched waters from hydrocarbon seeps in the vicinity of the DWH wellhead also showed LREE removal concurrent with methane consumption. Metagenomic sequencing of incubation samples revealed that LREE-containing MDHs were present. Our field and laboratory observations provide further insight into the biochemical pathways of methanotrophy during the DWH blowout. Additionally, our results are the first observations of direct biological alteration of REE distributions in oceanic systems. In view of the ubiquity of LREE-containing MDHs in oceanic systems, our results suggest that biological uptake of LREEs is an overlooked aspect of the oceanic geochemistry of this group of elements previously thought to be biologically inactive and an unresolved factor in the flux of methane, a potent greenhouse gas, from the ocean

    Recent trends in primary-care antidepressant prescribing to children and young people: an e-cohort study

    Get PDF
    Concerns relating to increased use of psychotropic medication contrast with those of under-treatment and under-recognition of common mental disorders in children and young people (CYP) across developed countries. Little is known about the indications recorded for antidepressant prescribing in primary care in CYP.This was an electronic cohort study of routinely collected primary-care data from a population of 1.9 million, Wales, UK. Poisson regression was undertaken to model adjusted counts of recorded depression symptoms, diagnoses and antidepressant prescriptions. Associated indications were explored.3 58 383 registered patients aged 6-18 years between 1 January 2003 and 31 December 2013 provided a total of 19 20 338 person-years of follow-up. The adjusted incidence of antidepressant prescribing increased significantly [incidence rate ratio (IRR) for 2013 = 1.28], mainly in older adolescents. The majority of new antidepressant prescriptions were for citalopram. Recorded depression diagnoses showed a steady decline (IRR = 0.72) while depression symptoms (IRR = 2.41) increased. Just over half of new antidepressant prescriptions were associated with depression (diagnosis or symptoms). Other antidepressant prescribing, largely unlicensed, was associated with diagnoses such as anxiety and pain.Antidepressant prescribing is increasing in CYP while recorded depression diagnoses decline. Unlicensed citalopram prescribing occurs outside current guidelines, despite its known toxicity in overdose. Unlicensed antidepressant prescribing is associated with a wide range of diagnoses, and while accepted practice, is often not supported by safety and efficacy studies. New strategies to implement current guidance for the management of depression in CYP are required

    Light Rare Earth Element Depletion During Deepwater Horizon Blowout Methanotrophy

    Get PDF
    Rare earth elements have generally not been thought to have a biological role. However, recent work has demonstrated that the light REEs (LREEs: La, Ce, Pr, and Nd) are essential for at least some methanotrophs, being co-factors in the XoxF type of methanol dehydrogenase (MDH). We show here that dissolved LREEs were significantly removed in a submerged plume of methane-rich water during the Deepwater Horizon (DWH) well blowout. Furthermore, incubation experiments conducted with naturally methane-enriched waters from hydrocarbon seeps in the vicinity of the DWH wellhead also showed LREE removal concurrent with methane consumption. Metagenomic sequencing of incubation samples revealed that LREE-containing MDHs were present. Our field and laboratory observations provide further insight into the biochemical pathways of methanotrophy during the DWH blowout. Additionally, our results are the first observations of direct biological alteration of REE distributions in oceanic systems. In view of the ubiquity of LREE-containing MDHs in oceanic systems, our results suggest that biological uptake of LREEs is an overlooked aspect of the oceanic geochemistry of this group of elements previously thought to be biologically inactive and an unresolved factor in the flux of methane, a potent greenhouse gas, from the ocean

    Limited contribution of ancient methane to surface waters of the U.S. Beaufort Sea shelf

    Get PDF
    Ā© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Science Advances 4 (2018): eaao4842, doi:10.1126/sciadv.aao4842.In response to warming climate, methane can be released to Arctic Ocean sediment and waters from thawing subsea permafrost and decomposing methane hydrates. However, it is unknown whether methane derived from this sediment storehouse of frozen ancient carbon reaches the atmosphere. We quantified the fraction of methane derived from ancient sources in shelf waters of the U.S. Beaufort Sea, a region that has both permafrost and methane hydrates and is experiencing significant warming. Although the radiocarbon-methane analyses indicate that ancient carbon is being mobilized and emitted as methane into shelf bottom waters, surprisingly, we find that methane in surface waters is principally derived from modern-aged carbon. We report that at and beyond approximately the 30-m isobath, ancient sources that dominate in deep waters contribute, at most, 10 Ā± 3% of the surface water methane. These results suggest that even if there is a heightened liberation of ancient carbonā€“sourced methane as climate change proceeds, oceanic oxidation and dispersion processes can strongly limit its emission to the atmosphere.The National Science Foundation (PLR-1417149; awarded to J.D.K.) primarily supported this work with additional support provided by the U.S. Department of Energy (DE-FE0028980; awarded to J.D.K.). Atmospheric 14C-CH4 measurements were funded by NASA via the Jet Propulsion Laboratory (Earth Ventures project ā€œCarbon in Arctic Reservoirs Vulnerability Experimentā€) to the University of Colorado under contract 1424124. K.M.S. acknowledges support from the University of Minnesota Grant-in-Aid program

    Estimating the impact of seep methane oxidation on ocean pH and dissolved inorganic radiocarbon along the US Mid-Atlantic Bight

    Get PDF
    Author Posting. Ā© American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Biogeosciences 126(1), (2021): e2019JG005621, https://doi.org/10.1029/2019JG005621.Ongoing ocean warming can release methane (CH4) currently stored in ocean sediments as free gas and gas hydrates. Once dissolved in ocean waters, this CH4 can be oxidized to carbon dioxide (CO2). While it has been hypothesized that the CO2 produced from aerobic CH4 oxidation could enhance ocean acidification, a previous study conducted in Hudson Canyon shows that CH4 oxidation has a small shortā€term influence on ocean pH and dissolved inorganic radiocarbon. Here we expand upon that investigation to assess the impact of widespread CH4 seepage on CO2 chemistry and possible accumulation of this carbon injection along 234 km of the U.S. Midā€Atlantic Bight. Consistent with the estimates from Hudson Canyon, we demonstrate that a small fraction of ancient CH4ā€derived carbon is being assimilated into the dissolved inorganic radiocarbon (mean fraction of 0.5 Ā± 0.4%). The areas with the highest fractions of ancient carbon coincide with elevated CH4 concentration and active gas seepage. This suggests that aerobic CH4 oxidation has a greater influence on the dissolved inorganic pool in areas where CH4 concentrations are locally elevated, instead of displaying a cumulative effect downcurrent from widespread groupings of CH4 seeps. A firstā€order approximation of the input rate of ancientā€derived dissolved inorganic carbon (DIC) into the waters overlying the northern U.S. Midā€Atlantic Bight further suggests that oxidation of ancient CH4ā€derived carbon is not negligible on the global scale and could contribute to deepwater acidification over longer time scales.This study was sponsored by U.S. Department of Energy (DEā€FE0028980, awarded to J. D. K; DEā€FE0026195 interagency agreement with C. D. R.). We thank the crew of the R/V Hugh R. Sharp for their support, G. Hatcher, J. Borden, and M. Martini of the USGS for assistance with the LADCP, and Zach Bunnell, Lillian Henderson, and Allison Laubach for additional support at sea.2021-06-2
    • ā€¦
    corecore