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The com plexity and diversity  o f  parallel programming languages and com puter architectures hinders pro­

grammers in developing  p ro g ra m s  a n d  greatly lim its program portability. A ll MIMD parallel programming  
system s, however, address common requirements for process creation, process m anagement, and interprocess 
communication. This paper describes and illustrates a structured programming system  (D PO S) and graph­
ical program m ing environment for generating and debugging high-level MIND parallel programs. D PO S is 
a metalanguage for defining parallel program networks based on the common requirem ents o f d istribu ted  
parallel com puting that is portable across languages, modular, and highly flexible. The system  uses the 
concept o f  stratification to  separate process network creation and the control o f  parallelism form com puta­
tional work. Individual processes are defined within the process object layer as traditional single threaded  
programs without parallel language constructs. Process networks and communication are defined graphically  
within the system  layer at a high level o f  abstraction as recursive graphs. Communication is facilitated in 
D PO S by extending  message passing sem antics in several ways to  im plem ent highly flexible message pass­
ing constructs. D PO S processes exchange messages through bi-directional channel objects using guarded, 
buffered, synchronous and asynchronous communication semantics. The D PO S environment also generates 
source  code and provides a simulation system  for graphical debugging and animation o f the program s in 
graph form.
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A b str a c t  - The complexity and diversity of par­

allel programming languages and computer archi­

tectures hinders programmers in developing pro­

grams and greatly limits program portability. All 

MIMD parallel programming systems, however, ad­

dress common requirements for process creation, pro­

cess management, and interprocess communication. 

This paper describes and illustrates a structured pro­

gramming system  (DPOS) and graphical program­

ming environment for generating and debugging high- 

level MIMD parallel programs. DPOS is a metalan­

guage for defining parallel program networks based on 

the common requirements of distributed parallel com­

puting that is portable across languages, modular, 

and highly flexible. The system  uses the concept of 

str a tif ic a t io n  to separate process network creation 

and the control of parallelism from computational 

work. Individual processes are defined within the 

p r o c e ss  o b je c t  layer as traditional single threaded 

programs without parallel language constructs. Pro­

cess networks and communication are defined graph­

ically within the sy s te m  layer at a high level of ab­

straction as recursive graphs. Communication is fa­

cilitated in DPOS by extending message passing se­

mantics in several ways to implement highly flexi­

ble message passing constructs. DPOS processes ex­

change messages through bi-directional c h a n n e l ob­

jects using guarded, buffered, synchronous and asyn­

chronous communication semantics. The DPOS en­

vironment also generates source code and provides a

simulation system for graphical debugging and ani­

mation of the programs in graph form.

1 Introduction

W ithin the research area of distributed parallel com­

puter systems the technology to develop software has 

not kept up with the advances in hardware devel­

opment. In addition to the computational issues 

of imperative sequential programs, parallel programs 

must address issues that are strictly related to par­

allel programming models such as creation and man­

agement of parallelism, synchronization controls, etc. 

Programmers must also resolve architecture related 

problems. Machine specific primitives for process cre­

ation and synchronization must be incorporated into 

programming models and architectural issues such 

as process mapping and load balancing must be ad­

dressed. Also, the topologies of process networks 

are generally complex and irregular graph structures. 

Single threaded languages may successfully capture 

the topology of a single threaded program. Repre­

senting a process graph structure in single threaded 

languages, however, is often difficult and obscure. 

The ability to understand and define parallel pro­

grams and the portability of programs that are ma­

chine specific and model specific at a low level is 

severely compromised.

All MIMD parallel programming systems, how­

ever, address common general requirements for pro­
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cess creation and management and interprocess com­

munication. Also, due to the impact of distributed 

parallel computer architectures on algorithm design, 

distributed parallel algorithm structures are often 

groupable into common structure types.

We propose the following solution to some of these 

problems o f parallel computing:

1. The separation of parallel program structure and 

synchronization from strictly computational (in 

the sequential programming sense) issues.

2. The representation of the parallel program struc­

ture and synchronization in a form that is lan­

guage independent, that supports common par­

allel program structures, and that accurately and 

understandably presents program topology.

3. A method of communication that does not re­

quire programmers to resolve low level synchro­

. nization problems.

4. Allow programmers to develop processes as 

purely sequential blocks of code that can be de­

veloped and debugged as encapsulated units.

5. Individual processes and clusters of processes are 

encapsulated. This supports the modular reuse 

of clusters. Also, parallel program development 

is ‘evolutionary’ in the sense that programs grad­

ually evolve from individual sequential blocks to  

large networks by combining processes and clus­

ters of processes.

CSP[3] is a basis model for many distributed paral­

lel programming languages and shares some features 

with DPOS. It uses common sequential language 

constructs and incorporates several parallel features. 

Many distributed systems use a subset of the com­

munication features of CSP and a similar notion of 

sequential processes. In CSP processes are statically 

allocated. CSP communication is direct via channels 

(a specific receiver and sender are specified for each 

channel). CSP requires special language constructs to

implement message-passing semantics within individ­

ual processes. CSP specifies a single message-passing 

semantics (synchronous guarded). Unlike CSP, most 

distributed parallel programming systems and lan­

guages allow some form of dynamic process creation. 

In most systems, process creation is similar to func­

tion calling. Most systems use direct communication 

which means that senders indicate a specific receiver. 

Most systems use a single message-passing semantics 

and most require programmers to use new language 

constructs.

DPOS differs in several ways from CSP and most 

other distributed parallel programming systems:

1. DPOS allows dynamic process allocation. DPOS 

process creation is similar to abstract data type 

definition rather than function calling. DPOS 

process subnetworks are defined as graph struc­

tured units.

2. DPOS message-passing semantics are an at­

tribute of the communication channel and not 

a language construct.

3. DPOS channels allow indirect communication. 

This means that multiple sender and receiver 

processes may use the same channel.

4. DPOS incorporates several commonly used 

message-passing protocols. Also, because DPOS 

semantics are encapsulated within channel ob­

jects, multiple communication protocols may co­

exist within the same program.

The ramifications of these differences are discussed in 

the following sections.

2 DPOS

DPOS[2] brings together the concepts of object- 

oriented programming, graphical programming, and 

aspects of modern functional languages. A DPOS 

program is defined as a network of active processes 

called Process Objects (POs) and communication
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lines called Channels that are grouped into subnet­

works called Network Modules (NMs). In DPOS a 

communicating process network model is used.

2.1 P ro cess  O b jec ts

Process Objects (PO) are single threaded program 

functions with calling parameters identical to tradi­

tional sequential program functions. These active 

objects employ much of the modularity, encapsula­

tion of function, and encapsulation of data found in 

sequential object-oriented programming. Sequential 

objects and many object-like parallel systems termi­

nate execution between receipt of messages. These 

systems must save state information before termina­

tion and test state information upon receipt of every 

message. DPOS process objects do not terminate ex­

ecution between receipt of messages. Instead, pro­

cess objects block while attem pting to receive mes­

sages from channels leaving the runtime stack intact. 

The state of computation for the object is defined by 

the runtime stack as in non object-oriented program­

ming. Because of this, the need for state variables 

is reduced and consequentially the amount and com­

plexity of code that the programmer must write to 

explicitly maintain state variables is reduced. DPOS 

objects enjoy the encapsulation of functionality and 

data of sequential object oriented programming with­

out the cost in terms of explicit state variable main- 

tan ance.

The connection links (Channels) between Process 

Objects appear as variables passed in as calling pa­

rameters similar to files or streams in traditional pro­

gramming. Process Objects communicate with each 

other via channel accessor functions like sen d  or re ­

c e iv e . No additional syntax or language extensions 

are required, since simple function call syntax is used. 

The control flow of Process Objects is internal. The 

progress of computation, however, may be controlled 

by regulating message traffic into and out of the Pro­

cess Object causing the PO to block waiting for com­

munication to proceed. The synchronization required 

for communication is controlled by the communica­

tion channel. Because of this a PO may follow a 

bounded sequential computation or may be an un­

bounded cyclical computation (like an operating sys­

tem process) that is I /O  driven via its communication 

channels.

The creation of Process Objects is specified within 

the parent Network Module. The termination of pro­

cess objects occurs when the execution of the code 

segment for the process object terminates. The rules 

governing the specification and creation of process 

objects are similar to those for network modules (see 

Subsection 2.3).

The sequential nature of Process Objects allows 

them to be developed and debugged individually as 

separate programs before integration into a network 

module. Simple terminal input and output is substi­

tuted for channel communication during sequential 

debugging. A library of channel definitions in the 

base language has been developed for sequential de­

bugging.

Global data structures are not defined within the 

DPOS model. The use of channel objects to imple­

ment data that is shared between many processes is 

discussed below (see subsections 2.2 and 5.2).

2.2 C hanne ls

Communication and synchronization between Pro­

cess Objects is accomplished by message-passing. 

The concept of message-passing is not new. Simu­

lation systems have long used message queues for in­

teractions between concurrent processes in simulated 

parallelism. In true distributed parallel environments 

like OCCAM[7,5] and CSP channels are the primary 

mode of communication. In these and most other 

channel message-passing systems, the channel repre­

sents a simple communication relationship between 

a sender and a receiver process. In these systems 

communication is tightly synchronized. This means
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that both sender and receiver must block while the 

exchange of data is made. A process may select 

(guard) the type of message it receives by means of a 

language construct that nondeterministically chooses 

from available incoming messages.

In DPOS a channel is treated as a separate object 

in the object-oriented sense and not just as a com­

munication relationship. This allows the semantics 

o f channels to be extended in several ways. The se­

m antics of channel communication is an attribute of 

the channel. DPOS channels encapsulate both func­

tional semantics and in some cases data storage. This 

encapsulation has several advantages:

1. It allows channels to be accessed by multiple 

sender and receiver processes. The arbitration 

for access is handled within the channel object. 

This considerably reduces both the number of 

channels required by a program and the com­

plexity of managing channels. For example, the 

merging and splitting streams of data is triv­

ially implemented using shared channels. Multi­

ple process access to channels allows channels to 

be used to implement shared data values. This 

usage is shown in example 5.2.

2. It removes the need for language constructs to 

implement communication semantics. Because 

of this, the PO definitions of a DPOS pro­

gram need no extensions beyond traditional sin­

gle threaded programming constructs.

3. It allows bi-directional communication. Allow­

ing bi-directional communication may signifi­

cantly reduce the number of channels required 

by a program as illustrated in subsection 5.1.

4. Communication is indirect. In direct communi­

cation system s the sender names a single receiver 

or link dedicated to the receiver explicitly and 

possibly visa versa. This form of communica­

tion is adequate for parent child communication 

but it hampers general dynamic process creation

because it requires that senders and receivers 

be notified whenever a new potential receiver 

(or sender) process is created. Many process 

network programs require siblings or cousins to 

communicate and require substantial propoga- 

tion code to be added to programs. In DPOS, 

many processes may use the same channels so 

dynamic process creation is unhampered. New 

processes may be added that use existing chan­

nels without notification (see Example 5.2).

5. It allows multiple types of channels. In DPOS 

the type of a channel specifies the semantics 

of communication for that particular channel. 

Supporting multiple channel types allows greater 

programmer flexibility.

In contrast, most programming systems support 

only one communication protocol. The DPOS 

guarded input channel type is roughly equiva­

lent of OCCAM’S guarded communication sys­

tem. Guarded input is appropriate for some pro­

grams, however, it requires strict synchroniza­

tion of potential senders with the receiver and 

requires the additional overhead of guard reso­

lution. In many programs another type of com­

munication such as bufFered communication is 

more appropriate, however, neither strict syn­

chronization nor guard resolution is necessary for 

buffered communication. Many programs may 

appropriately use more than one communication 

protocol and they must be implemented with 

whatever semantics are available. Paying for the 

added protocols with the overhead of the exist­

ing channel types and the added complexity of 

implementing additional constructs.

DPOS channel types include: synchronized 

guarded input, synchronized guarded output, 

asynchronous, buffered, and synchronous.
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Network Modules (NMs) are abstractions used for 

defining subnetworks of DPOS programs. Network 

Modules are composed of Process Objects, Channels 

and other nested Network Modules. Network Module 

types are defined as graph structures (see Figures 1,

2, 4, and 5). Network Module definitions have local 

environment and have formal parameters that corre­

spond to data values and channel instances. Invoking 

an NM requires actual parameter arguments to be 

provided. The arguments are the actual access chan­

nels that connect to the NM as well as any required 

values computed within the scope of the invoking en­

vironment. Network Modules may be nested and re­

cursively or mutually recursively defined. In the tra­

ditional object-oriented framework, a Network Mod­

ule definition constitutes a class definition and may 

be instanced numerous times in the definition of a 

process network.

Global values are not defined within DPOS. The 

only exterior environment visible from within a Net­

work Module consists of the actual arguments passed 

in at the instantiation of the NM. A Network Module 

then is completely encapsulated by the actual argu­

ments and peripheral channels and may be analyzed 

as a unit. This modularity allows a Network Module 

to be developed and debugged as a unit by instanti­

ating it and its peripheral channels and without cre­

ating the outlying program network.

A Network Module instance might not be instanti­

ated when the parent NM is instantiated. The instan­

tiation of the NM may be delayed until a demand is 

made for its creation. Delayed Network Modules are 

instantiated whenever data flow occurs in one of its 

peripheral channels. Alternatively the instantiation  

may be conditional in which case a constraint condi­

tion is evaluated within the parent NM environment 

to determine whether or not the instance is to be in­

stantiated. Constraint conditions and instantiation  

delays are specified within the parent NM definition.

2.3 N etw ork M odules These properties allow process networks to be speci­

fied in a manner similar to abstract data types such 

as trees and graphs in high-level languages. For ex­

ample, a generic binary tree Network Module may be 

defined which is then used to define a specific, irreg­

ular extended tree process network (see Figure 2).

3 Portability

The DPOS metalanguage is portable across program­

ming languages. The process networks defined us­

ing DPOS may be implemented in any target lan­

guage supported. The currently supported target 

languages all have a common base language, sequen­

tial Scheme. Three target languages derived from 

Scheme are supported: Butterfly Scheme[8,4], Con­

current Utah Scheme[6], and DPOS Scheme. Butter­

fly Scheme is a shared memory language using ‘locks’ 

for synchronization and ‘futures’ for process creation. 

Concurrent Utah Scheme is a distributed parallel lan­

guage using remote function calls to create processes 

and a specialized form of monitor for synchronization 

control. DPOS Scheme is a distributed memory lan­

guage which uses remote process creation and DPOS 

channels for communication. DPOS Scheme was de­

signed and implemented specifically to use DPOS se­

mantics as a part of this project.

The individual process definitions are traditional 

sequential programs developed outside of DPOS. In­

dividual process definitions are language dependent 

and are implemented in the base language. Pro­

cess Objects using only Scheme constructs and DPOS 

function calls are portable across the three target lan­

guages supported.

The implementation of a DPOS derived base lan­

guage such as DPOS Scheme requires the ability 

to implement explicit process creation and destruc­

tion, and the ability to implement simple message- 

passing. The implementation of DPOS constructs in 

an existing base language requires the ability to con­

struct the same basic features in the base language.
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Shared memory languages supporting semaphores, 

locks, monitors or similar synchronization and some 

form of process creation such as futures are generally 

adequate for this. Many distributed programming 

languages that are message oriented meet the imple­

mentation requirements.

4 DPOS Programming Envi­
ronment

The design of the system layer of DPOS was in­

tended to be implemented graphically from its in­

ception and to encapsulate the parallel programming 

issues of network topology, synchronization control 

and dynamic process creation. The DPOS Program­

ming Environment incorporates a graphical program 

editor/anim ator and simulator program. The envi­

ronment provides the capability to define Network 

Modules, specify process object interfaces, to gener­

ate source code in any of the target languages, to sim­

ulate program execution and to interactively animate 

and debug DPOS programs using the simulation out­

put.

The graphical editor is a window-oriented block di­

agram manipulating system. It also incorporates text 

editing for specification of NM and PO class names, 

instance names, formal parameters and arguments. 

Class definitions of Network Modules and Process 

Objects are defined by editing tem plates (see Fig­

ures 1 and 2). Instances of these classes may then 

be placed in other tem plates or added (recursively) 

into the original tem plate. Blocks represent Network 

Module, Process Object and channel instances. Ex­

ternal ‘ports’ on tem plates correspond to ports on 

the instance blocks. The accessibility of a channel 

instance from a Network Module or process object 

instance is represented by a connection line from a 

‘port’ on the NM or PO instance to the channel in­

stance.

The programs presented were selected to demonstrate 

features of DPOS and its application to common par­

allel program structures. The examples refer to Fig­

ures 1 thru 6. Figures 1, 2, 4, and 5 show Network 

Module templates. In the tem plates the square boxes 

represent channels with the enclosed letter indicating 

channel type. Black boxes represent nested Network 

Modules and white boxes represent Process Objects. 

Network Modules and Process Objects are labeled 

ty p e -n a m e :in sta n c e -n a m e .

5.1 F ibonacci N u m b ers

This program presents the naive recursive algorithm  

for computing the fibonacci sequence. This example 

(see Figures 1, 2 and 3) is presented as a simple il­

lustration of a recursive process network programmed 

with DPOS and not because it is the optimum way to 

solve this particular problem. The program includes 

two Process Object types, a controller process of type 

f -s ta r t  and worker processes of type fib -u n it. The 

entire Process Object source listing is given in Fig­

ure 3. The graphical Network Module definitions are 

shown in Figures 1 and 2.

Process objects use interface functions defined by 

the user. Process objects f -s ta r t  and fib -u n it use 

interface functions f -s ta r t-p o  and fib -u n it-p o  re­

spectively (see Figure 3). Interface files may contain 

an arbitrary amount of sequential code to support the 

semantics o f the PO.

Figure 1 shows the top-level Network Module. The 

only argument to the F ib - te s t  NM is the value of 

s iz e  which determines the fibonacci number to be 

computed. Figure 1 contains an f-s ta r t  type Process 

Object called f-s ta r t:s t  and a f ib -tr e e  type Network 

Module called fib -tr e e :tre e . F -s ta r t:s t  sends the 

seed s ize  to its channel then reads the result when 

the computation is complete. The fib -tr e e  Network 

Module is shown in Figure 2. It contains a fib -u n it  

PO and two delayed fib -tr e e  NMs. F ib -u n it  pro-

5 Example Programs
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cess objects receive a s ize  value from their top chan­

nel and if s ize  is less than g ra in s ize  they do the 

fib calculation for that s ize . If s ize  is greater than 

g ra in s ize  they send size-1 and size-2  to their bot­

tom  channel which triggers the creation of the delayed 

f ib -tr e e  Network Modules who do the work. The 

child processes then carry out the subcomputations 

and return the results.

This example demonstrates three DPOS features: 

The dynamic creation of a process network struc­

ture using recursive Network Modules and delayed 

instantiation (Figure 2). The removal of parallel con­

trol mechanisms from the programmer defined source 

code of process objects (Figure 3). This example also 

demonstrates the use of guarded input channels for 

bi-directional communication. The rea d -g u a rd  op­

eration specifies the channel and a list o f acceptable 

message types. The w r ite -g u a r d  operation speci­

fies the channel, message type and data. A received 

guard message is of the form ( ty p e  d a ta ). The use 

of guard channels ensure that only appropriate mes­

sage types are received. If guard channels are not 

used then a separate input and output channel would 

be required for both top and bottom  connections to  

ensure that high-level race conditions do not occur. 

Message types used are ask  and rep ly .

5.2 M a tr ix  M u ltip lica tio n

This example program multiplies an L x M matrix 

(A) by a M x N matrix (B). The problem is typical 

of many numerical computations and other problems 

with very regular structure. The solution represents 

the common parallel programming strategy of using 

a pool of servant processes to carry out similar com­

putations.

Network Modules for the program are shown in 

Figures 4 and 5. In the program a control process 

of type m m c o n tr o l first sends the B matrix to a 

channel labeled “B matrix” where it is read each of 

the r o w -m m  type servant processes defined in row -

1 (1> fib-test: child of (> 
| parameters:*ize 1

"i 1 Tz 1 T3 I T4 I ]

L _ s
t«rt:*t

PO instance 
parameter: size

tl

-2
c3 input guard channel

a

J jlll fib-tree: tree NM instance 3

.4 M

hi i ....tb....r S3 1 W

Figure 1: Fib-test Network Module

<1> fib-tree: child of () 
par Meters:

I TT
<-port connection

PO instance 

[-undeleyed connection 

input guard channel

<-deleyed connection

fib-treeiright

NM Instance 
(delayed)

I g  I

R1

R2

R3

R4

Figure 2: Fib-tree Network Module

(define (f-start-po CBAI size)

(write-guard CBAI ask size)
(display

(list 'answer (read-guard CBAI (list reply)))))

(define (fib n)

(if (< n 3)

1
(+ (fib (- n 1)) (fib (- n 2)))))

(define (fib-nnit-po TOP BOT)
(let ((size (cadr (read-guard TOP (list ask)))) 

(grainsize 7))
(if (< size grainsize)
(write-guard TOP reply (fib size))

(begin

(write-guard BOT ask (- size 1))

(write-guard BOT ask (- size 2))
(let ((resl (cadr (read-guard BOT (list reply)))) 

(res2 (cadr (read-guard BOT (list reply))))) 

(write-guard TOP REPLY (+ resl res2)))))))

Figure 3: Fibonacci Process Objects
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Figure 4: Matrix M ultiplication Network Module

(define (roB-nm-po ROWS-II B-MATRII RESULT-OUT)

(let ((matb (chan-read B-MATRIX)))

(do ((row (receive ROtfS-II) (receive ROVS-II)))

((not ro*))

(let ((index (car roo))
(x (cadr roe))

(y (caddr ros))

(roBvec (cadr (cddr ros))))
(send RESULT-OUT

(list index (roB-x-mat x y roBvec matb)))))))

(define

(mmcontrol-po
A-MAT-II B-MAT-II ROWS-II B-MATRIX ROW-CIT cnt) 

(let* ((matb (receive B-MAT-II))
(mata (receive A-MAT-II))

(x (vector-length mata))
(y (vector-length matb))
(z (vector-length (vector-rel matb 0))))

(send B-MATRIX matb))
(send ROW-CIT x)
(do ((a 0 (+ a 1))) ;send oat the ross 

((= a x))
(send ROWS-II (list a y z (vector-rel mata a)))) 

(do ((a 0 (+ a 1))) ;send oat terminations 

((= a cnt))
(send ROWS-II #f))))

Figure 6: Process Object Code Network Module

m m -1st:1st. It then distributes rows of matrix A to 

the servants on a first-come first-served basis through 

channel “rows in” . Computed rows are sent to a col­

lector process m m o u t:res  which assembles the re­

sulting matrix. Process Object m m o u t receives the 

number of rows from m m c o n tr o l:c tr  via channel 

“row cnt” to determine when it has received all re­

sultant rows.

The list o f servant processes is defined as a recur­

sive Network Module in Figure 5. The individual ser­

vant processes are of type ro w -m m  and the source 

code is shown in Figure 6. The number of servants 

is determined by defining a constraint condition on 

the nested recursive NM instance ro w -m m -lst:rest. 

The servant processes all share common access to the 

channels in the m a tr ix -m u l Network Module.

The program maintains a balanced workload by 

taking advantage of shared channel “rows in” to al­

low the nondeterministic distribution of row vectors 

to servant processes. The channels marked “B” are 

buffered to relax the synchronization between pro­

cesses as much as possible. The program uses asyn­

chronous channel “B matrix” which buffers a single 

message and allows input operations r e c e iv e  with re­

moval or ch a n -rea d  without removal of the channel 

contents (see Figure 3). Using ch a n -rea d  in this pro­

gram implements a read only shared variable for the 

servant processes.

6 Debugging and Animation

Network Module definitions may optionally be gen­

erated with debugging trace information. DPOS 

Scheme is implemented in simulated form. The 

DPOS Scheme simulator optionally executes debug­

ging source code and produces a trace file of program 

execution. The execution may then be animated us­

ing the graphical interface.

DPOS allows a wide range of debugging informa­

tion to be monitored. The amount and complexity 

of debugging trace information may be formidable.
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The DPOS interface allows the programmer to selec­

tively monitor aspects of the program execution and 

exclude others. The programmer may open template, 

parameter and trace windows corresponding to Net­

work Module, channel and Process Object instances 

and monitor information that pertains only to the 

selected object.

The graphical animation of Network Module 

tem plates shows the creation and termination of 

processes and Network Modules, message-passing 

through channels. Information of this type is rep­

resented by coloring and marking connection lines, 

PO, NM and channel blocks. This information is gen­

erally adequate to locate deadlocks, infinite process 

recursions and high-level race conditions.

More detailed information is available through pa­

rameter windows as text menus indicating arguments 

supplied to instantiated process objects and Network 

Modules. Trace windows display the trace output 

streams for the object being monitored. Trace win­

dow output includes status information such as check­

points, error messages and i /o  generated by pro­

cesses, and channel status information such as buffer 

contents and blocked readers and writers.

The user optionally selects to allow free run of the 

animation, to single step, or to step one process (an­

imate until the next event that affects that process). 

The user also specifies the speed of the animation.

7 Performance Measurements

Preliminary performance measurements are encour­

aging particularly for more complex program types 

such as Split Merge Sorting [1] and Branch and 

Bound Search that require shared variable implemen­

tation or complex intercommunication. Further test­

ing is being carried out to test the limits of the pro­

gramming system  on more complex programs. Per­

formance measurements have been taken using But­

terfly Scheme on the BBN Butterly and using dis­

tributed CUS in a distributed workstation environ-

Performance Measurements
Time(sec) Processors Speedup Efficiency

Prime Humber Sieve
155.35 1 — 1.0
13.65 12 11.38 0.948

Matrix Multiplication
196.000 1 — 1.00
62.604 4 3.118 0.78
36.400 8 5.385 0.67

Branch and Bound Search
386.64 1 — 1.00
141.34 3 2.73 0.91
85.38 5 4.53 0.90

Split Merge Sorting

58.33 1 - 1.00
19.10 4 3.05 0.76

ment. Performance measurements reflect programs 

written using DPOS in the base languages.

8 Conclusions and Further 
Work

DPOS provides a high-level metalanguage and pro­

gram ming/debugging environment. DPOS defines 

process networks and communication based on fun­

damental properties of parallel computer systems at a 

high level of abstraction that is flexible and portable 

across a variety of architectures and existing parallel 

languages. The system allows the incremental con­

struction of programs, with a minimum requirement 

for low-level parallel programming. The DPOS inter­

face provides an integrated set o f tools for defining 

visualizing and debugging that greatly reduces the 

need for low-level parallel programming and that as­

sists programmers in resolving parallel programming 

problems with deadlock, high-level race conditions 

and recursion problems. The interface also helps or­

ganize and selectively access sequential debugging in­

formation on a module by module basis. Programs 

defined using DPOS have been shown to execute at

9



high levels o f performance. [8] BBN Advanced Computers Inc. Butterfly  Scheme

We feel that DPOS offers significant possibilities Reference. 1988. 

in several other areas: 1) Integration o f process map­

ping and load balancing criteria into DPOS. 2) Inte­

gration of parallel performance monitoring with the 

DPOS environment. 3) Extension of DPOS to other 

base languages. 4) Extension of DPOS programs to 

include multiple languages given suitable data type 

coercion. 5) Inclusion of high-level control flow at

the process object level. 6) Development of large ap- ,

plications to test the system  limits.

Our currently lim ited experience shows that DPOS 

works well when experienced sequential programmers 

try to write parallel programs although it takes time 

to learn the parallel system  semantics and style. We 

will be teaching a parallel programming class that 

uses DPOS to gain more insignt into its utility.
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