431 research outputs found

    Field Research, Research Design and the Tehran Bazaar

    Get PDF
    With the gradual opening of Iranian society in the second decade after the Islamic Revolution, a number of research centers and networks have been established. Scholarly interest in Iran has also been shifting from examining the causes of the Revolution to investigating its consequences. Scholars are increasingly conducting research based on archival analysis, in-depth interviewing, participant observation and survey analysis to investigate social transformations that have taken place in Iran

    Optimization of an Active Electrokinetic Micromixer Based on the Number and Arrangement of Microelectrodes

    Get PDF
    This paper reports enhancement of mixing process via electroosmotic phenomenon using a microelectrode system, which is structured by aligning a number of electrodes placed on the walls of a mixing chamber integrated within a T-Shape micromixer. A number of electrodes are dispositioned on the inner and outer loops of the annular mixing chamber, and different design patterns based on a variety of arrangements for these electrodes are investigated using numerical methods. The electric potentials on the microelectrodes are time-dependent, and this is found to be a key element for chaotic mixing. Also, it is deduced that due to the impact of the applied AC electric field and the induced surface charge on the fluid particles, a number of vortices are generated in the aqueous solution. These vortices significantly enhance the mixing of the species in the mixing chamber. In order to find an optimum pattern based on electrode dispositioning and the number of electrodes, effects of the geometric configuration of the microelectrodes are analyzed and the mixing effects for different design patterns are investigated via comparing the associated flow structure, concentration transport mechanism, and the mixing performance. Analyzing different designs, an optimum pattern based on the electrode arrangement and the number of electrodes is found to be the case for which the electrodes are placed on the inner and outer loops of the mixing chamber in a cross-like pattern

    Probiotic \u3ci\u3eBifidobacterium\u3c/i\u3e strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics

    Get PDF
    Background: One way to improve both the ecological performance and functionality of probiotic bacteria is by combining them with a prebiotic in the form of a synbiotic. However, the degree to which such synbiotic formulations improve probiotic strain functionality in humans has not been tested systematically. Our goal was to use a randomized, double-blind, placebo-controlled, parallel-arm clinical trial in obese humans to compare the ecological and physiological impact of the prebiotic galactooligosaccharides (GOS) and the probiotic strains Bifidobacterium adolescentis IVS-1 (autochthonous and selected via in vivo selection) and Bifidobacterium lactis BB-12 (commercial probiotic allochthonous to the human gut) when used on their own or as synbiotic combinations. After 3 weeks of consumption, strain-specific quantitative real-time PCR and 16S rRNA gene sequencing were performed on fecal samples to assess changes in the microbiota. Intestinal permeability was determined by measuring sugar recovery in urine by GC after consumption of a sugar mixture. Serum-based endotoxin exposure was also assessed. Results: IVS-1 reached significantly higher cell numbers in fecal samples than BB-12 (P \u3c 0.01) and, remarkably, its administration induced an increase in total bifidobacteria that was comparable to that of GOS. Although GOS showed a clear bifidogenic effect on the resident gut microbiota, both probiotic strains showed only a non-significant trend of higher fecal cell numbers when administered with GOS. Post-aspirin sucralose:lactulose ratios were reduced in groups IVS-1 (P = 0.050), IVS-1 + GOS (P = 0.022), and GOS (P = 0.010), while sucralose excretion was reduced with BB-12 (P = 0.002) and GOS (P = 0.020), indicating improvements in colonic permeability but no synergistic effects. No changes in markers of endotoxemia were observed. Conclusion: This study demonstrated that “autochthony” of the probiotic strain has a larger effect on ecological performance than the provision of a prebiotic substrate, likely due to competitive interactions with members of the resident microbiota. Although the synbiotic combinations tested in this study did not demonstrate functional synergism, our findings clearly showed that the pro- and prebiotic components by themselves improved markers of colonic permeability, providing a rational for their use in pathologies with an underlying leakiness of the gut

    Single-Arm, Non-randomized, Time Series, Single-Subject Study of Fecal Microbiota Transplantation in Multiple Sclerosis

    Get PDF
    Emerging evidence suggests intestinal microbiota as a central contributing factor to the pathogenesis of Relapsing-Remitting-Multiple-Sclerosis (RRMS). This novel RRMS study evaluated the impact of fecal-microbiota-transplantation (FMT) on a broad array of physiological/clinical outcomes using deep metagenome sequencing of fecal microbiome. FMT interventions were associated with increased abundances of putative beneficial stool bacteria and short-chain-fatty-acid metabolites, which were associated with increased/improved serum brain-derived-neurotrophic-factor levels and gait/walking metrics. This proof-of-concept single-subject longitudinal study provides evidence of potential importance of intestinal microbiota in the pathogenesis of MS, and scientific rationale to help design future randomized controlled trials assessing FMT in RRMS patients

    Gut bacterial deamination of residual levodopa medication for Parkinson's disease

    Get PDF
    BACKGROUND: Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Gastrointestinal tract dysfunction is one of the non-motor features, where constipation is reported as the most common gastrointestinal symptom. Aromatic bacterial metabolites are attracting considerable attention due to their impact on gut homeostasis and host's physiology. In particular, Clostridium sporogenes is a key contributor to the production of these bioactive metabolites in the human gut. RESULTS: Here, we show that C. sporogenes deaminates levodopa, the main treatment in Parkinson's disease, and identify the aromatic aminotransferase responsible for the initiation of the deamination pathway. The deaminated metabolite from levodopa, 3-(3,4-dihydroxyphenyl)propionic acid, elicits an inhibitory effect on ileal motility in an ex vivo model. We detected 3-(3,4-dihydroxyphenyl)propionic acid in fecal samples of Parkinson's disease patients on levodopa medication and found that this metabolite is actively produced by the gut microbiota in those stool samples. CONCLUSIONS: Levodopa is deaminated by the gut bacterium C. sporogenes producing a metabolite that inhibits ileal motility ex vivo. Overall, this study underpins the importance of the metabolic pathways of the gut microbiome involved in drug metabolism not only to preserve drug effectiveness, but also to avoid potential side effects of bacterial breakdown products of the unabsorbed residue of medication

    Particulate matter air pollution causes oxidant-mediated increase in gut permeability in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Exposure to particulate matter (PM) air pollution may be an important environmental factor leading to exacerbations of inflammatory illnesses in the GI tract. PM can gain access to the gastrointestinal (GI) tract via swallowing of air or secretions from the upper airways or mucociliary clearance of inhaled particles.</p> <p>Methods</p> <p>We measured PM-induced cell death and mitochondrial ROS generation in Caco-2 cells stably expressing oxidant sensitive GFP localized to mitochondria in the absence or presence of an antioxidant. C57BL/6 mice were exposed to a very high dose of urban PM from Washington, DC (200 μg/mouse) or saline via gastric gavage and small bowel and colonic tissue were harvested for histologic evaluation, and RNA isolation up to 48 hours. Permeability to 4kD dextran was measured at 48 hours.</p> <p>Results</p> <p>PM induced mitochondrial ROS generation and cell death in Caco-2 cells. PM also caused oxidant-dependent NF-κB activation, disruption of tight junctions and increased permeability of Caco-2 monolayers. Mice exposed to PM had increased intestinal permeability compared with PBS treated mice. In the small bowel, colocalization of the tight junction protein, ZO-1 was lower in the PM treated animals. In the small bowel and colon, PM exposed mice had higher levels of IL-6 mRNA and reduced levels of ZO-1 mRNA. Increased apoptosis was observed in the colon of PM exposed mice.</p> <p>Conclusions</p> <p>Exposure to high doses of urban PM causes oxidant dependent GI epithelial cell death, disruption of tight junction proteins, inflammation and increased permeability in the gut <it>in vitro </it>and <it>in vivo</it>. These PM-induced changes may contribute to exacerbations of inflammatory disorders of the gut.</p

    Direct Action of Non-Digestible Oligosaccharides against a Leaky Gut

    Get PDF
    The epithelial monolayer is the primary determinant of mucosal barrier function, and tight junction (TJ) complexes seal the paracellular space between the adjacent epithelial cells and represent the main "gate-keepers" of the paracellular route. Impaired TJ functionality results in increased permeation of the "pro-inflammatory" luminal contents to the circulation that induces local and systemic inflammatory and immune responses, ultimately triggering and/or perpetuating (chronic) systemic inflammatory disorders. Increased gut leakiness is associated with intestinal and systemic disease states such as inflammatory bowel disease and neurodegenerative diseases such as Parkinson's disease. Modulation of TJ dynamics is an appealing strategy aiming at inflammatory conditions associated with compromised intestinal epithelial function. Recently there has been a growing interest in nutraceuticals, particularly in non-digestible oligosaccharides (NDOs). NDOs confer innumerable health benefits via microbiome-shaping and gut microbiota-related immune responses, including enhancement of epithelial barrier integrity. Emerging evidence supports that NDOs also exert health-beneficial effects on microbiota independently via direct interactions with intestinal epithelial and immune cells. Among these valuable features, NDOs promote barrier function by directly regulating TJs via AMPK-, PKC-, MAPK-, and TLR-associated pathways. This review provides a comprehensive overview of the epithelial barrier-protective effects of different NDOs with a special focus on their microbiota-independent modulation of TJs

    Intestinal fungi contribute to development of alcoholic liver disease

    Get PDF
    This study was supported in part by NIH grants R01 AA020703, U01 AA021856 and by Award Number I01BX002213 from the Biomedical Laboratory Research & Development Service of the VA Office of Research and Development (to B.S.). K.H. was supported by a DFG (Deutsche Forschungsgemeinschaft) fellowship (HO/ 5690/1-1). S.B. was supported by a grant from the Swiss National Science Foundation (P2SKP3_158649). G.G. received funding from the Yale Liver Center NIH P30 DK34989 and R.B. from NIAAA grant U01 AA021908. A.K. received support from NIH grants RC2 AA019405, R01 AA020216 and R01 AA023417. G.D.B. is supported by funds from the Wellcome Trust. We acknowledge the Human Tissue and Cell Research (HTCR) Foundation for making human tissue available for research and Hepacult GmbH (Munich, Germany) for providing primary human hepatocytes for in vitro analyses. We thank Dr. Chien-Yu Lin Department of Medicine, Fu-Jen Catholic University, Taiwan for statistical analysis.Peer reviewedPublisher PD
    corecore