6 research outputs found

    Impact of adoption of heat-stress tolerant maize hybrid on yield and profitability: Evidence from Terai region of Nepal

    Get PDF
    Abiotic stresses (drought, heat) are one of the major impediments to enhancing the maize productivity of marginal farmers in the facet of climate change. The present study attempts to investigate the impact of heat-tolerant maize hybrid on yield and income in the Terai region of Nepal. This study uses cross-sectional farm household-level data collected in August 2021 from a randomly selected sample of 404 rural households. We used a doubly robust inverse probability weighted regression adjustment method to obtain reliable impact estimates. Adoption of heat-tolerant hybrid increases yields by 16% and income by 44% in the spring season (a stress condition). Overall, yield increases by 12%, net income by 31%, saving of 40% in seed costs, and per capita food expenditure increases by 8.50%. Hence a conducive environment must be created for scaling up heat-tolerant maize varieties to increase productivity, minimize risk, and transform of the maize sector

    Evaluation of Maize Genotypes Against Post Flowering Stalk Rot Under Terai Region of Nepal

    Full text link
    The inadequate source of resistance materials in maize against major biotic stresses is one of the main reasons for considerable loss of grain yield in Nepal. Post flowering stalk rot disease caused by Fusarium moniliforme is a serious disease that exposes high incidence at grain filling stage of maize in terai region of Nepal during summer season. This study was done to evaluate level of resistance, or tolerance in selected genotypes against the post flowering stalk rot disease of maize. Accordingly, thirty maize genotypes were tested for maize stalk rot resistance during summer season of 2016 and 2017 at National Maize Research Program, Rampur (NMRP), Chitwan. The experiment was done under natural epiphytotic condition at hot spot of the disease by using Randomized Complete Block design with 2 replications for each treatment. The package of practices was followed as per national recommendation. The summer season of 2016 and 2017 were affable for post flowering stalk rot of maize at NMRP, Rampur. Out of 30 genotypes, most of the tested entries showed susceptible reaction during both the years; however, RML-95/RML-96, Across-9942/Across-9944, ZM-401, Rampur 34, RamS03F08 and TLBRS07F16 showed resistant reaction against the disease and might be useful for the development of post flowering stalk rot resistant maize varieties for terai region of Nepal

    Willingness to Pay (WTP) for Heat-Tolerant Maize Hybrids in the Mid-Western Terai Region of Nepal

    No full text
    High atmospheric temperatures can reduce maize production in different parts of Asia. Heat stress is the major driving force behind the need for varietal development that confers a heat tolerance trait (drought + heat tolerant) to maize hybrids. CIMMYT has developed heat-tolerant maize hybrids and deployed them in the market in collaboration with NARS partners. This study was conducted to estimate farmers’ willingness to pay for heat-tolerant maize hybrids in the Terai region of Nepal. A socioeconomic survey of 404 randomly selected maize-growing households was conducted to estimate farmers’ willingness to pay using the contingent valuation method. Given the economic importance of heat-tolerant maize hybrids in maize cultivation, the survey showed that the average WTP for heat-tolerant maize hybrids was 71% more than that for the current varieties in the market, including overall seed sources and subsidized seed. Without a subsidy, the farmers’ WTP price was at a 19% premium compared to the average price paid for conventional hybrids. Factors such as education, owning land, the interaction of hybrid adopters and owning land, soil depth, the number of goats/sheep, and the semi-pucca homes of households influenced the WTP for heat-tolerant maize hybrids. Heterogeneous demand was observed with respect to years of hybrid maize cultivation, farmers’ association with the network group, and the gender of the head of the household. In the context of climate change and global warming scenarios, Nepal’s agriculture policy should prioritize increasing domestic seed production and the distribution of heat-tolerant maize hybrids through a public–private partnership model

    Performance evaluation of quality protein maize genotypes across various maize production agro ecologies of Nepal

    No full text
    To identify superior quality protein maize genotypes for grain yield under different agro climatic conditions of terai and hill districts in Nepal, the coordinated varietal trials (CVT) were conducted at Dailekh, Doti, Salyan, Lumle and Pakhribas in 2013 and Salyan, Pakhribas and Kabre in 2014 during summer season and coordinated farmer’s field trials (CFFT) at Surkhet and Dailekh in 2013 and Salyan, Pakhribas and Khumaltar in 2014 during summer season. The experiment was carried out using randomized complete block design with three replications for CVT and CFFT. Across the locations and years the superior genotypes found under CVT were S01SIYQ, S01SIWQ-2 and Poshilo Makai-1 where as S99TLYQ-HG-AB, S99TLYQ-B and Poshilo Makai-1 were found superior genotypes under CFFT. The superior genotypes derived from CFFT will be promoted further for similar environments across the country

    Performance evaluation of quality protein maize genotypes across various maize production agro ecologies of Nepal

    No full text
    ABSTRACT To identify superior quality protein maize genotypes for grain yield under different agro climatic conditions of terai and hill districts in Nepal, the coordinated varietal trials (CVT) were conducted at Dailekh, Doti, Salyan, Lumle and Pakhribas in 2013 and Salyan, Pakhribas and Kabre in 2014 during summer season and coordinated farmer's field trials (CFFT) at Surkhet and Dailekh in 2013 and Salyan, Pakhribas and Khumaltar in 2014 during summer season. The experiment was carried out using randomized complete block design with three replications for CVT and CFFT. Across the locations and years the superior genotypes found under CVT were S01SIYQ, S01SIWQ-2 and Poshilo Makai-1 where as S99TLYQ-HG-AB, S99TLYQ-B and Poshilo Makai-1 were found superior genotypes under CFFT. The superior genotypes derived from CFFT will be promoted further for similar environments across the country
    corecore