80 research outputs found

    Promiscuous Aggregate-Based Inhibitors Promote Enzyme Unfolding

    Get PDF
    One of the leading sources of false positives in early drug discovery is the formation of organic small molecule aggregates, which inhibit enzymes nonspecifically at micromolar concentrations in aqueous solution. The molecular basis for this widespread problem remains hazy. To investigate the mechanism of inhibition at a molecular level, we determined changes in solvent accessibility that occur when an enzyme binds to an aggregate using hydrogen-deuterium exchange mass spectrometry. For AmpC beta-lactamase, binding to aggregates of the small molecule rottlerin increased the deuterium exchange of all 10 reproducibly detectable peptides, which covered 41% of the sequence of beta-lactamase. This suggested a global increase in proton accessibility upon aggregate binding, consistent with denaturation. We then investigated whether enzyme-aggregate complexes were more susceptible to proteolysis than uninhibited enzyme. For five aggregators, trypsin degradation of beta-lactamase increased substantially when beta-lactamase was inhibited by aggregates, whereas uninhibited enzyme was generally stable to digestion. Combined, these results suggest that the mechanism of action of aggregate-based inhibitors proceeds via partial protein unfolding when bound to an aggregate particle

    Design and Synthesis of High Affinity Inhibitors of Plasmodium falciparum and Plasmodium vivax N-Myristoyltransferases Directed by Ligand Efficiency Dependent Lipophilicity (LELP)

    Get PDF
    N-Myristoyltransferase (NMT) is an essential eukaryotic enzyme and an attractive drug target in parasitic infections such as malaria. We have previously reported that 2-(3-(piperidin-4-yloxy)benzo[b]thiophen-2-yl)-5-((1,3,5-trimethyl-1H-pyrazol-4-yl)methyl)-1,3,4-oxadiazole (34c) is a high affinity inhibitor of both Plasmodium falciparum and P. vivax NMT and displays activity in vivo against a rodent malaria model. Here we describe the discovery of 34c through optimization of a previously described series. Development, guided by targeting a ligand efficiency dependent lipophilicity (LELP) score of less than 10, yielded a 100-fold increase in enzyme affinity and a 100-fold drop in lipophilicity with the addition of only two heavy atoms. 34c was found to be equipotent on chloroquine-sensitive and -resistant cell lines and on both blood and liver stage forms of the parasite. These data further validate NMT as an exciting drug target in malaria and support 34c as an attractive tool for further optimization

    Validacija topokemijskih modela za predviđanje permeabilnosti kroz krvno-moždanu barijeru

    Get PDF
    Recently published topochemical models for permeability through the blood-brain barrier were validated and cross-validated in the present study. Five models based on three topochemical indices, Wiener’s topochemical index - a distance-based topochemical descriptor, molecular connectivity topochemical index - an adjacency-based topochemical descriptor and eccentric connectivity topochemical index - an adjacency-cum-distance based topochemical descriptor, for permeability of structurally and chemically diverse molecules through blood-brain barrier were used in the present investigation. A data set comprising 62 structurally and chemically diverse compounds was selected. This data set was divided into two sets of 31 compounds each - one to serve as the validation set and other as the cross-validation set. The values of all the three-topochemical indices in the original as well as in the normalized form for each of the 31 compounds of the validation set were computed using an in house computer program. Resultant data was analyzed and each compound was assigned a permeability characteristic using topochemical models, which was then compared with the reported permeability through the blood-brain barrier. Accuracy of prediction of these models was calculated. The same procedure was similarly followed for the cross-validation set. Studies revealed accuracy of prediction of the order of 7080% during validation. Surprisingly, very high predictability of the order of 7791% was observed during cross-validation. High predictability observed during validation as well as cross-validation authenticates topochemical models for prediction of permeability through the blood-brain barrier.U ovom radu su validirani i unakrsno validirani nedavno objavljeni topokemijski modeli za permeabilnost kroz krvno-moždanu barijeru. Predviđanje prolaska kroz krvno-moždanu barijeru strukturno i kemijski različitih molekula provedeno je na pet modela koji se temelje na tri topološka indeksa, Wienerovom topološkom indeksu, topološkom indeksu molekularne povezanosti i topološkom indeksu ekscentrične povezanosti. Ukupno 62 spoja podijeljena su u dva seta koji su sadržavali 31 spoj. Jedan set upotrebljen je za validaciju, a drugi za unakrsnu validaciju. Vrijednosti svih triju topoloških indeksa u početnom setu i u normaliziranom setu su računate pomoću kompjutorskog programa. Rezultati su analizirani i svakom spoju je pridružena teorijska vrijednost permeabilnosti, koja je zatim uspoređivana s objavljenim eksperimentalnim podacima za permeabilnost kroz krvno-moždanu barijeru. Točnost predviđanja bila je između 70 i 80%. Isti postupak je proveden za unakrsno validacijski set, a točnost je bila iznenađujeće velika (7791%), što ukazuje da se upotrebljeni topokemijski modeli mogu upotrijebiti za predviđanje permeabilnsot kroz krvno-moždanu barijeru

    Qualitative prediction of blood–brain barrier permeability on a large and refined dataset

    Get PDF
    The prediction of blood–brain barrier permeation is vitally important for the optimization of drugs targeting the central nervous system as well as for avoiding side effects of peripheral drugs. Following a previously proposed model on blood–brain barrier penetration, we calculated the cross-sectional area perpendicular to the amphiphilic axis. We obtained a high correlation between calculated and experimental cross-sectional area (r = 0.898, n = 32). Based on these results, we examined a correlation of the calculated cross-sectional area with blood–brain barrier penetration given by logBB values. We combined various literature data sets to form a large-scale logBB dataset with 362 experimental logBB values. Quantitative models were calculated using bootstrap validated multiple linear regression. Qualitative models were built by a bootstrapped random forest algorithm. Both methods found similar descriptors such as polar surface area, pKa, logP, charges and number of positive ionisable groups to be predictive for logBB. In contrast to our initial assumption, we were not able to obtain models with the cross-sectional area chosen as relevant parameter for both approaches. Comparing those two different techniques, qualitative random forest models are better suited for blood-brain barrier permeability prediction, especially when reducing the number of descriptors and using a large dataset. A random forest prediction system (ntrees = 5) based on only four descriptors yields a validated accuracy of 88%

    Seasonal variability in spontaneous cervical artery dissection

    No full text
    We examined the seasonal variability of spontaneous cervical artery dissection (sCAD) by analysing prospectively collected data from 352 patients with 380 sCAD (361 symptomatic sCAD; 305 carotid and 75 vertebral artery dissections) admitted to two university hospitals with a catchment area of 2 200 000 inhabitants between 1985 and 2004. Presenting symptoms and signs of the 380 sCAD were ischaemic stroke in 241 (63%), transient ischaemic attack in 40 (11%), retinal ischemia in seven (2%), and non‐ischaemic in 73 (19%) cases; 19 (5%) were asymptomatic sCAD. A seasonal pattern, with higher frequency of sCAD in winter (31.3%; 95% confidence interval (CI): 26.5 to 36.4; p = 0.021) compared to spring (25.5%; 95% CI: 21.1 to 30.3), summer (23.5%; 95% CI: 19.3 to 28.3), and autumn (19.7%; 95% CI: 15.7 to 24.1) was observed. Although the cause of seasonality in sCAD is unclear, the winter peaks of infection, hypertension, and aortic dissection suggest common underlying mechanisms

    Assessment of Tractable Cysteines for Covalent Targeting by Screening Covalent Fragments

    No full text
    Targeted covalent inhibition and the use of irreversible chemical probes are important strategies in chemical biology and drug discovery. To date, the availability and reactivity of cysteine residues amenable for covalent targeting have been evaluated by proteomic and computational tools. Herein, we present a toolbox of fragments containing a 3,5-bis(trifluoromethyl)phenyl core that was equipped with chemically diverse electrophilic warheads showing a range of reactivities. We characterized the library members for their reactivity, aqueous stability and specificity for nucleophilic amino acids. By screening this library against a set of enzymes amenable for covalent inhibition, we showed that this approach experimentally characterized the accessibility and reactivity of targeted cysteines. Interesting covalent fragment hits were obtained for all investigated cysteine-containing enzymes

    Sustainable performance evaluation of urban mobility projects using multicriteria group decision making approach

    No full text
    Grandhi, S ORCiD: 0000-0001-9704-7822; Wibowo, S ORCiD: 0000-0002-5318-8428This paper presents a multicriteria group decision making approach for effectively evaluating the sustainable performance of urban mobility projects. The subjectiveness and imprecision of the performance evaluation process is adequately modeled by using intuitionistic fuzzy numbers. To avoid the complex and unreliable process of comparing fuzzy numbers usually required in fuzzy multicriteria decision making, an efficient algorithm is developed based on the degree of indeterminacy and the degree of similarities. An example is presented to demonstrate the applicability of the approach
    corecore