8 research outputs found

    The Austroasiatic Munda Population from India and its Enigmatic Origin: A HLA Diversity Study

    No full text
    The Austroasiatic linguistic family disputes its origin between two geographically distant regions of Asia, India, and Southeast Asia, respectively. As genetic studies based on classical and gender-specific genetic markers provided contradictory results to this debate thus far, we investigated the HLA diversity (HLA-A, -B, and –DRB1 loci) of an Austroasiatic Munda population from Northeast India and its relationships with other populations from India and Southeast Asia. Because molecular methods currently used to test HLA markers often provide ambiguous results due to the high complexity of this polymorphism, we applied two different techniques (reverse PCR-SSO typing on microbeads arrays based on Luminex technology, and PCR-SSP typing) to type the samples. After validating the resulting frequency distributions through the original statistical method described in our companion article (Nunes et al. 2011), we compared the HLA genetic profile of the sampled Munda to those of other Asiatic populations, among which Dravidian and Indo-European-speakers from India and populations from East and Southeast Asia speaking languages belonging to different linguistic families

    Genetic Evidence for Complexity in Ethnic Differentiation and History in East Africa

    No full text
    The Afro-Asiatic and Nilo-Saharan language families come into contact inWestern Ethiopia. Ethnic diversity is particularly high in the South, where the Nilo-Saharan Nyangatom and the Afro-Asiatic Daasanach dwell. Despite their linguistic differentiation, both populations rely on a similar agripastoralist mode of subsistence. Analysis of mitochondrial DNA extracted from Nyangatom and Daasanach archival sera revealed high levels of diversity, with most sequences belonging to the L haplogroups, the basal branches of the mitochondrial phylogeny. However, in sharp contrast with other Ethiopian populations, only 5% of the Nyangatom and Daasanach sequences belong to haplogroups M and N. The Nyangatom and Daasanach were found to be significantly differentiated, while each of them displays close affinities with some Tanzanian populations. The strong genetic structure found over East Africa was neither associated with geography nor with language, a result confirmed by the analysis of 6711 HVS-I sequences of 136 populations mainly from Africa. Processes of migration, language shift and group absorption are documented by linguists and ethnographers for the Nyangatom and Daasanach, thus pointing to the probably transient and plastic nature of these ethnic groups. These processes, associated with periods of isolation, could explain the high diversity and strong genetic structure found in East Africa

    16th IHIW: Analysis of HLA Population Data, with updated results for 1996 to 2012 workshop data (AHPD project report)

    No full text
    We present here the results of the Analysis of HLA Population Data (AHPD) project of the 16th International HLA and Immunogenetics Workshop (16IHIW) held in Liverpool in May–June 2012. Thanks to the collaboration of 25 laboratories from 18 different countries, HLA genotypic data for 59 new population samples (either well-defined populations or donor registry samples) were gathered and 55 were analysed statistically following HLA-NET recommendations. The new data included, among others, large sets of well-defined populations from north-east Europe and West Asia, as well as many donor registry data from European countries. The Gene[rate] computer tools were combined to create a Gene[rate] computer pipeline to automatically (i) estimate allele frequencies by an expectation-maximization algorithm accommodating ambiguities, (ii) estimate heterozygosity, (iii) test for Hardy–Weinberg equilibrium (HWE), (iv) test for selective neutrality, (v) generate frequency graphs and summary statistics for each sample at each locus and (vi) plot multidimensional scaling (MDS) analyses comparing the new samples with previous IHIW data. Intrapopulation analyses show that HWE is rarely rejected, while neutrality tests often indicate a significant excess of heterozygotes compared with neutral expectations. The comparison of the 16IHIW AHPD data with data collected during previous workshops (12th–15th) shows that geography is an excellent predictor of HLA genetic differentiations for HLA-A, -B and -DRB1 loci but not for HLA-DQ, whose patterns are probably more influenced by natural selection. In Europe, HLA genetic variation clearly follows a north to south-east axis despite a low level of differentiation between European, North African and West Asian populations. Pacific populations are genetically close to Austronesian-speaking South-East Asian and Taiwanese populations, in agreement with current theories on the peopling of Oceania. Thanks to this project, HLA genetic variation is more clearly defined worldwide and better interpreted in relation to human peopling history and HLA molecular evolution

    Deciphering the fine nucleotide diversity of full HLA class I and class II genes in a well-documented population from sub-Saharan Africa

    No full text
    With the aim to understand how next-generation sequencing (NGS) improves both our assessment of genetic variation within populations and our knowledge on HLA molecular evolution, we sequenced and analysed 8 HLA loci in a well-documented population from sub-Saharan Africa (Mandenka). The results of full-gene NGS-MiSeq sequencing compared with those obtained by traditional typing techniques or limited sequencing strategies showed that segregating sites located outside exon 2 are crucial to describe not only class I but also class II population diversity. A comprehensive analysis of exons 2, 3, 4 and 5 nucleotide diversity at the 8 HLA loci revealed remarkable differences among these gene regions, notably a greater variation concentrated in the antigen recognition sites of class I exons 3 and some class II exons 2, likely associated with their peptide-presentation function, a lower diversity of HLA-C exon 3, possibly related to its role as a KIR ligand, and a peculiar molecular diversity of HLA-A exon 2, revealing demographic signals. Based on full-length HLA sequences, we also propose that the most frequent DRB1 allele in the studied population, DRB1*13:04, emerged from an allelic conversion involving 3 potential alleles as donors and DRB1*11:02:01 as recipient. Finally, our analysis revealed a high occurrence of the DRB1*13:04-DQA1*05:05:01-DQB1*03:19 haplotype, possibly resulting from a selective sweep due to protection to Onchorcerca volvulus, a prevalent pathogen in West Africa. This study unveils highly relevant information on the molecular evolution of HLA genes in relation to their immune function, calling for similar analyses in other populations living in contrasting environments

    The HLA-B landscape of Africa: Signatures of pathogen-driven selection and molecular identification of candidate alleles to malaria protection

    No full text
    Human leukocyte antigen (HLA) genes play a key role in the immune response to infectious diseases, some of which are highly prevalent in specific environments, like malaria in sub-Saharan Africa. Former case-control studies showed that one particular HLA-B allele, B*53, was associated with malaria protection in Gambia, but this hypothesis was not tested so far within a population genetics framework. In this study, our objective was to assess whether pathogen-driven selection associated with malaria contributed to shape the HLA-B genetic landscape of Africa. To that aim, we first typed the HLA-A and -B loci in 484 individuals from 11 populations living in different environments across the Sahel, and we analysed these data together with those available for 29 other populations using several approaches including linear modelling on various genetic, geographic and environmental parameters. In addition to relevant signatures of populations' demography and migrations history in the genetic differentiation patterns of both HLA-A and -B loci, we found that the frequencies of three HLA alleles, B*53, B*78 and A*74, were significantly associated with Plasmodium falciparum malaria prevalence, suggesting their increase through pathogen-driven selection in malaria-endemic environments. The two HLA-B alleles were further identified, by high-throughput sequencing, as B*53:01:01 (in putative linkage disequilibrium with one HLA-C allele, C*04:01:01:01) and B*78:01 in all but one individuals tested, making them appropriate candidates to malaria protection. These results highlight the role of environmental factors in the evolution of the HLA polymorphism and open key perspectives for functional studies focusing on HLA peptide-binding properties

    Analysis of the HLA population data (AHPD) submitted to the 15th International Histocompatibility/Immunogenetics Workshop by using the Gene[rate] computer tools accommodating ambiguous data (AHPD project report)

    No full text
    During the 15th International Histocompatibility and Immunogenetics Workshop (IHIWS), 14 human leukocyte antigen (HLA) laboratories participated in the Analysis of HLA Population Data (AHPD) project where 18 new population samples were analyzed statistically and compared with data available from previous workshops. To that aim, an original methodology was developed and used (i) to estimate frequencies by taking into account ambiguous genotypic data, (ii) to test for Hardy–Weinberg equilibrium (HWE) by using a nested likelihood ratio test involving a parameter accounting for HWE deviations, (iii) to test for selective neutrality by using a resampling algorithm, and (iv) to provide explicit graphical representations including allele frequencies and basic statistics for each series of data. A total of 66 data series (1–7 loci per population) were analyzed with this standard approach. Frequency estimates were compliant with HWE in all but one population of mixed stem cell donors. Neutrality testing confirmed the observation of heterozygote excess at all HLA loci, although a significant deviation was established in only a few cases. Population comparisons showed that HLA genetic patterns were mostly shaped by geographic and/or linguistic differentiations in Africa and Europe, but not in America where both genetic drift in isolated populations and gene flow in admixed populations led to a more complex genetic structure. Overall, a fruitful collaboration between HLA typing laboratories and population geneticists allowed finding useful solutions to the problem of estimating gene frequencies and testing basic population diversity statistics on highly complex HLA data (high numbers of alleles and ambiguities), with promising applications in either anthropological, epidemiological, or transplantation studies
    corecore