7 research outputs found

    Change in physical activity after smoking cessation: the Coronary Artery Risk Development in Young Adults (CARDIA) study.

    Get PDF
    AIMS: To estimate physical activity trajectories for people who quit smoking, and compare them to what would have been expected had smoking continued. DESIGN, SETTING AND PARTICIPANTS: A total of 5115 participants in the Coronary Artery Risk Development in Young Adults Study (CARDIA) study, a population-based study of African American and European American people recruited at age 18-30 years in 1985/6 and followed over 25 years. MEASUREMENTS: Physical activity was self-reported during clinical examinations at baseline (1985/6) and at years 2, 5, 7, 10, 15, 20 and 25 (2010/11); smoking status was reported each year (at examinations or by telephone, and imputed where missing). We used mixed linear models to estimate trajectories of physical activity under varying smoking conditions, with adjustment for participant characteristics and secular trends. FINDINGS: We found significant interactions by race/sex (P = 0.02 for the interaction with cumulative years of smoking), hence we investigated the subgroups separately. Increasing years of smoking were associated with a decline in physical activity in black and white women and black men [e.g. coefficient for 10 years of smoking: -0.14; 95% confidence interval (CI) = -0.20 to -0.07, P < 0.001 for white women]. An increase in physical activity was associated with years since smoking cessation in white men (coefficient 0.06; 95% CI = 0 to 0.13, P = 0.05). The physical activity trajectory for people who quit diverged progressively towards higher physical activity from the expected trajectory had smoking continued. For example, physical activity was 34% higher (95% CI = 18 to 52%; P < 0.001) for white women 10 years after stopping compared with continuing smoking for those 10 years (P = 0.21 for race/sex differences). CONCLUSIONS: Smokers who quit have progressively higher levels of physical activity in the years after quitting compared with continuing smokers

    Association Between Lifetime Marijuana Use and Cognitive Function in Middle Age: The Coronary Artery Risk Development in Young Adults (CARDIA) Study.

    Get PDF
    Marijuana use is increasingly common in the United States. It is unclear whether it has long-term effects on memory and other domains of cognitive function. To study the association between cumulative lifetime exposure to marijuana use and cognitive performance in middle age. We used data from the Coronary Artery Risk Development in Young Adults (CARDIA) study, a cohort of 5115 black and white men and women aged 18 to 30 years at baseline from March 25, 1985, to June 7, 1986 (year 0), and followed up over 25 years from June 7, 1986, to August 31, 2011, to estimate cumulative years of exposure to marijuana (1 year = 365 days of marijuana use) using repeated measures and to assess associations with cognitive function at year 25. Linear regression was used to adjust for demographic factors, cardiovascular risk factors, tobacco smoking, use of alcohol and illicit drugs, physical activity, depression, and results of the mirror star tracing test (a measure of cognitive function) at year 2. Data analysis was conducted from June 7, 1986, to August 31, 2011. Three domains of cognitive function were assessed at year 25 using the Rey Auditory Verbal Learning Test (verbal memory), the Digit Symbol Substitution Test (processing speed), and the Stroop Interference Test (executive function). Among 3385 participants with cognitive function measurements at the year 25 visit, 2852 (84.3%) reported past marijuana use, but only 392 (11.6%) continued to use marijuana into middle age. Current use of marijuana was associated with worse verbal memory and processing speed; cumulative lifetime exposure was associated with worse performance in all 3 domains of cognitive function. After excluding current users and adjusting for potential confounders, cumulative lifetime exposure to marijuana remained significantly associated with worse verbal memory. For each 5 years of past exposure, verbal memory was 0.13 standardized units lower (95% CI, -0.24 to -0.02; P = .02), corresponding to a mean of 1 of 2 participants remembering 1 word fewer from a list of 15 words for every 5 years of use. After adjustment, we found no associations with lower executive function (-0.03 [95% CI, -0.12 to 0.07]; P = .56) or processing speed (-0.04 [95% CI, -0.16 to 0.08]; P = .51). Past exposure to marijuana is associated with worse verbal memory but does not appear to affect other domains of cognitive function

    Brief report: The association of chronic pain and long-term opioid therapy with HIV treatment outcomes

    Get PDF
    Background: Chronic pain occurs in up to 85% of persons living with HIV and is commonly treated with long-term opioid therapy (LTOT). We investigated the impact of chronic pain and LTOT on HIV outcomes. Methods: This was prospective cohort study conducted between July 2015 and July 2016 in 5 HIV primary care clinics. Chronic pain was defined as ≥moderate pain for ≥3 months on the Brief Chronic Pain Questionnaire. Chronic pain and LTOT were assessed at an index visit. Suboptimal retention, defined as at least one "no-show" to primary care, and virologic failure were measured over the subsequent year. Multivariable logistic regression models were built for each outcome adjusting for site. Results: Among 2334 participants, 25% had chronic pain, 27% had suboptimal retention, 12% had virologic failure, and 19% were prescribed LTOT. Among individuals not on LTOT, chronic pain was associated with increased odds of suboptimal retention [adjusted odds ratio (aOR) 1.46, 95% confidence interval (CI): 1.10 to 1.93, P = 0.009] and virologic failure (aOR 1.97, 95% CI: 1.39 to 2.80, P < 0.001). Among individuals with chronic pain, there was no association between LTOT and retention, but LTOT was associated with lower rates of virologic failure (aOR 0.56, 95% CI: 0.33 to 0.96, P = 0.03). Conclusions: Chronic pain in participants not on LTOT was associated with virologic failure. This reinforces the need to identify effective chronic pain treatments for persons living with HIV and investigate their impact on HIV outcomes. The apparent protective association between LTOT and virologic failure in those with pain merits further exploration

    Comprehensive analysis of epigenetic clocks reveals associations between disproportionate biological ageing and hippocampal volume

    Get PDF
    The concept of age acceleration, the difference between biological age and chronological age, is of growing interest, particularly with respect to age-related disorders, such as Alzheimer’s Disease (AD). Whilst studies have reported associations with AD risk and related phenotypes, there remains a lack of consensus on these associations. Here we aimed to comprehensively investigate the relationship between five recognised measures of age acceleration, based on DNA methylation patterns (DNAm age), and cross-sectional and longitudinal cognition and AD-related neuroimaging phenotypes (volumetric MRI and Amyloid-β PET) in the Australian Imaging, Biomarkers and Lifestyle (AIBL) and the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Significant associations were observed between age acceleration using the Hannum epigenetic clock and cross-sectional hippocampal volume in AIBL and replicated in ADNI. In AIBL, several other findings were observed cross-sectionally, including a significant association between hippocampal volume and the Hannum and Phenoage epigenetic clocks. Further, significant associations were also observed between hippocampal volume and the Zhang and Phenoage epigenetic clocks within Amyloid-β positive individuals. However, these were not validated within the ADNI cohort. No associations between age acceleration and other Alzheimer’s disease-related phenotypes, including measures of cognition or brain Amyloid-β burden, were observed, and there was no association with longitudinal change in any phenotype. This study presents a link between age acceleration, as determined using DNA methylation, and hippocampal volume that was statistically significant across two highly characterised cohorts. The results presented in this study contribute to a growing literature that supports the role of epigenetic modifications in ageing and AD-related phenotypes

    Uncovering the heterogeneity and temporal complexity of neurodegenerative diseases with Subtype and Stage Inference

    Get PDF
    The heterogeneity of neurodegenerative diseases is a key confound to disease understanding and treatment development, as study cohorts typically include multiple phenotypes on distinct disease trajectories. Here we introduce a machine-learning technique\u2014Subtype and Stage Inference (SuStaIn)\u2014able to uncover data-driven disease phenotypes with distinct temporal progression patterns, from widely available cross-sectional patient studies. Results from imaging studies in two neurodegenerative diseases reveal subgroups and their distinct trajectories of regional neurodegeneration. In genetic frontotemporal dementia, SuStaIn identifies genotypes from imaging alone, validating its ability to identify subtypes; further the technique reveals within-genotype heterogeneity. In Alzheimer\u2019s disease, SuStaIn uncovers three subtypes, uniquely characterising their temporal complexity. SuStaIn provides fine-grained patient stratification, which substantially enhances the ability to predict conversion between diagnostic categories over standard models that ignore subtype (p = 7.18 7 10 124 ) or temporal stage (p = 3.96 7 10 125 ). SuStaIn offers new promise for enabling disease subtype discovery and precision medicine
    corecore