11 research outputs found

    Vitamin D Supplementation in Multiple Sclerosis: A Critical Analysis of Potentials and Threats

    No full text
    Multiple sclerosis (MS) is a chronic inflammatory demyelinating and neurodegenerative disease of the central nervous system (CNS). In recent years, vitamin D has gained attention, as low serum levels are suspected to increase the risk for MS. Cholecalciferol supplementation has been tested in several clinical trials, since hypovitaminosis D was linked to higher disease activity and may even play a role in long-term outcome. Here, we review the current understanding of the molecular effects of vitamin D beyond calcium homeostasis, the potential beneficial action in MS and hazards including complications of chronic and high-dose therapy. In clinical trials, doses of up to 40,000 IU/day were tested and appeared safe as add-on therapy for short-term periods. A recent meta-analysis of a randomized, double-blind, placebo-controlled clinical trial investigating vitamin D as add-on therapy in MS, however, suggested that vitamin D had no therapeutic effect on disability or relapse rate. We recognize a knowledge gap for chronic and high-dose therapy, which can lead to life-threatening complications related to vitamin D toxicity including renal failure, cardiac arrythmia and status epilepticus. Moreover, vitamin D toxicity may manifest as fatigue, muscle weakness or urinary dysfunction, which may mimic the natural course of progressive MS. Given these limitations, vitamin D supplementation in MS is a sensitive task which needs to be supervised by physicians. While there is strong evidence for vitamin D deficiency and the development of MS, the risk-benefit profile of dosage and duration of add-on supplementation needs to be further clarified

    Abnormal short-latency synaptic plasticity in the motor cortex of subjects with Becker muscular dystrophy: a rTMS study

    No full text
    We used repetitive transcranial magnetic stimulation (rTMS) to further investigate motor cortex excitability in 13 patients with Becker muscular dystrophy (BMD), six of them with slight mental retardation. RTMS delivered at 5Hz frequency and suprathreshold intensity progressively increases the size of motor evoked potentials (MEPs) in healthy subjects; the rTMS-induced facilitation of MEPs was significantly reduced in the BMD patients mentally retarded or classified as borderline when compared with age-matched control subjects and the BMD patients with normal intelligence. The increase in the duration of the cortical silent period was similar in both patient groups and controls. These findings suggest an altered cortical short-term synaptic plasticity in glutamate-dependent excitatory circuits within the motor cortex in BMD patients with intellectual disabilities. RTMS studies may shed new light on the physiological mechanisms of cortical involvement in dystrophinopathies

    Abnormal cortical synaptic plasticity in minimal hepatic encephalopathy

    No full text
    Minimal hepatic encephalopathy (MHE) represents the earliest stage of hepatic encephalopathy (HE). MHE is characterized by cognitive function impairment in the domains of attention, vigilance and integrative function, while obvious clinical manifestations are lacking. In the present study, we aimed at assessing whether subjects with MHE showed alterations in synaptic plasticity within the motor cortex. Previous findings suggest that learning in human motor cortex occurs through long-term potentiation (LTP)-like mechanisms. We employed therefore the paired associative stimulation (PAS) protocol by transcranial magnetic stimulation (TMS), which is able to induce LTP-like effects in the motor cortex of normal subjects. Fifteen patients with MHE and 15 age- and sex-matched cirrhotic patients without MHE were recruited. PAS consisted of 180 electrical stimuli of the right median nerve paired with a single TMS over the hotspot of right abductor pollicis brevis (APB) at an ISI of 25ms (PAS25). We measured motor evoked potentials (MEPs) before and after each intervention for up to 30min. In healthy subjects the PAS25 protocol was followed by a significant increase of the MEP amplitude. On the contrary, in patients with MHE the MEP amplitude was slightly reduced after PAS. These findings demonstrated that associative sensorimotor plasticity, an indirect probe for motor learning, is impaired in MHE patients

    Cholinergic transmission is impaired in patients with idiopathic normal-pressure hydrocephalus: a TMS study

    No full text
    The pathophysiological mechanisms of cognitive and gait disturbances in subjects with normal-pressure hydrocephalus (NPH) are still unclear. Cholinergic and other neurotransmitter abnormalities have been reported in animal models of NPH. The objective of this study was to evaluate the short latency afferent inhibition (SAI), a transcranial magnetic stimulation protocol which gives the possibility to test an inhibitory cholinergic circuit in the human brain, in subjects with idiopathic NPH (iNPH). We applied SAI technique in twenty iNPH patients before ventricular shunt surgery. Besides SAI, also the resting motor threshold and the short intracortical inhibition to paired stimulation were assessed. A significant reduction of the SAI (p\u2009=\u20090.016), associated with a less pronounced decrease of the resting motor threshold and the short latency intracortical inhibition to paired stimulation, were observed in patients with iNPH at baseline evaluation. We also found significant (p\u2009<\u20090.001) correlations between SAI values and the gait function tests, as well as between SAI and the neuropsychological tests. These findings suggest that the impairment of cholinergic neurons markedly contributes to cognitive decline and gait impairment in subjects with iNPH

    Cladribine Alters Immune Cell Surface Molecules for Adhesion and Costimulation: Further Insights to the Mode of Action in Multiple Sclerosis

    No full text
    Cladribine (CLAD) is a deoxyadenosine analogue prodrug which is given in multiple sclerosis (MS) as two short oral treatment courses 12 months apart. Reconstitution of adaptive immune function following selective immune cell depletion is the presumed mode of action. In this exploratory study, we investigated the impact of CLAD tablets on immune cell surface molecules for adhesion (CAMs) and costimulation (CoSs) in people with MS (pwMS). We studied 18 pwMS who started treatment with CLAD and 10 healthy controls (HCs). Peripheral blood mononuclear cells were collected at baseline and every 3 months throughout a 24-month period. We analysed ICAM-1, LFA-1, CD28, HLADR, CD154, CD44, VLA-4 (CD49d/CD29), PSGL-1 and PD-1 with regard to their expression on B and T cells (T helper (Th) and cytotoxic T cells (cT)) and surface density (mean fluorescence intensity, MFI) by flow cytometry. The targeted analysis of CAM and CoS on the surface of immune cells in pwMS revealed a higher percentage of ICAM-1 (B cells, Th, cT), LFA-1 (B cells, cT), HLADR (B cells, cT), CD28 (cT) and CD154 (Th). In pwMS, we found lower frequencies of Th and cT cells expressing PSGL-1 and B cells for the inhibitory signal PD-1, whereas the surface expression of LFA-1 on cT and of HLADR on B cells was denser. Twenty-four months after the first CLAD cycle, the frequencies of B cells expressing CD44, CD29 and CD49d were lower compared with the baseline, together with decreased densities of ICAM-1, CD44 and HLADR. The rate of CD154 expressing Th cells dropped at 12 months. For cT, no changes were seen for frequency or density. Immune reconstitution by oral CLAD was associated with modification of the pro-migratory and -inflammatory surface patterns of CAMs and CoSs in immune cell subsets. This observation pertains primarily to B cells, which are key cells underlying MS pathogenesis

    Spinal cord injury affects I-wave facilitation in human motor cortex

    No full text
    Transcranial magnetic stimulation (TMS) is represents a useful non-invasive approach for studying cortical physiology. To further clarify the mechanisms of cortical reorganization after spinal cord injury (SCI), we used a non-invasive paired TMS protocol for the investigation of the corticospinal I-waves, the so-called I-wave facilitation, in eight patients with cervical SCI. We found that the pattern of I-wave facilitation significantly differs between SCI patients with normal and abnormal central motor conduction (CMCT), and healthy controls. The group with normal CMCT showed increased I-wave facilitation, while the group with abnormal CMCT group showed lower I-wave facilitation compared to a control group. The facilitatory I-wave interaction occurs at the level of the motor cortex, and the mechanisms responsible for the production of I-waves are under control of GABA-related inhibition. Therefore, the findings of our small sample preliminary study provide further physiological evidence of increased motor cortical excitability in patients with preserved corticospinal projections. This is possibly due to decreased GABAergic intracortical inhibition. The excitability of networks producing short-interval intracortical facilitation could increase after SCI as a mechanism to enhance activation of residual corticospinal tract pathways and thus compensate for the impaired ability of the motor cortex to generate appropriate proper voluntary movements. Finally, the I-wave facilitation technique could be used in clinical neurorehabilitation as an additional method of assessing and monitoring function in SCI. A useful assessment and monitoring of motor cortical function in subjects with SCI can be obtained with this technique exploring the facilitation of the I-wave activity

    Facilitation of auditory comprehension after theta burst stimulation of Wernicke's area in stroke patients: a pilot study

    No full text
    Introduction: Single-pulse transcranial magnetic stimulation (TMS) and high-frequency repetitive TMS (rTMS) over Wernicke's area were found to facilitate language functions in right-handed healthy subjects. We aimed at investigating the effects of excitatory rTMS, given as intermittent theta burst stimulation (iTBS) over left Wernicke's area, on auditory comprehension in patients suffering from fluent aphasia after stroke of the left temporal lobe. Methods: We studied 13 patients with chronic fluent aphasia after an ischemic stroke involving Wernicke's area. iTBS was applied in random order to Wernicke's area, the right-hemisphere homologous of Wernicke's area, and the primary visual cortex. Auditory comprehension was blind assessed using the Token test before (T0), 5 (T1), and 40 min (T2) after a single session of iTBS. Results: At the first evaluation (T1) after iTBS on left Wernike's area, but not on the contralateral homologous area nor on the primary visual cortex, the scores on the Token test were significantly increased. No significant effects were observed at T2. Conclusion: We demonstrated that a single session of excitatory iTBS over Wernicke's area was safe and led to a transient facilitation of auditory comprehension in chronic stroke patients with lesions in the same area. Further studies are needed to establish whether TBS-induced modulation can be enhanced and transformed into longer-lasting effects by means of repeated TBS sessions and by combining TBS with speech and language therapy

    Cortical afferent inhibition reflects cognitive impairment in obstructive sleep apnea syndrome: a TMS study

    No full text
    Patients with obstructive sleep apnea syndrome (OSAS) show neurocognitive impairment, but the exact mechanisms that cause cognitive dysfunctions remain unknown. The cholinergic system is known to play a key role in all attentional processes and cognitive functions. A transcranial magnetic stimulation (TMS) protocol may give direct information about the function of some cholinergic circuits in the human brain; this technique relies on short latency afferent inhibition (SAI) of the motor cortex. The objective of this exploratory study was to test the hypothesis that impaired cognitive performances in OSAS patients are associated with a dysfunction of the cholinergic system, as assessed by SAI

    Spinal cord involvement in Lewy body-related \u3b1-synucleinopathies

    No full text
    CONTEXT: Lewy body (LB)-related \u3b1-synucleinopathy (LBAS) is the neuropathological hallmark of several neurodegenerative diseases such as Parkinson disease (PD), but it is also found in neurologically asymptomatic subjects. An abnormal accumulation of \u3b1-synuclein has been reported also in the spinal cord, but extent and significance of the spinal cord involvement are still poorly defined. OBJECTIVE: We aimed to review the studies addressing the spinal cord involvement of LBAS in healthy subjects and in patients with PD or other neurodegenerative diseases. METHODS: A MEDLINE search was performed using following terms: "spinal cord", " \u3b1-synucleinopathy", "\u3b1-synuclein", "Lewy body", "Parkinson's disease", "multiple system atrophy", "neurodegenerative disorder". RESULTS: LBAS in the spinal cord is associated with that of the medullary reticular formation and locus ceruleus in the brainstem but not with that in the olfactory bulb and amygdala. The intermediolateral columns of the thoracic and sacral cord are the most frequently and severely affected region of the spinal cord. LBAS occurs in centrally projecting spinal cord neurons integrating pain, in particular from lower body periphery. It also involves the sacral parasympathetic nucleus innervating the smooth muscles of the bladder and distal colon and the Onuf's nucleus innervating the striated sphincters. The spinal cord lesions may thus play a crucial role in the genesis of frequent non-motor symptoms such as pain, urinary symptoms, bowel dysfunction, autonomic failure including orthostatic hypotension and sexual disturbances. Moreover, these may also contribute to the motor symptoms, since \u3b1-synuclein inclusions have been observed in the pyramidal tracts of patients with PD and multiple system atrophy. CONCLUSION: Recognition of this peculiar spinal cord pathology may help in the management of the related symptoms in subjects affected by \u3b1-synucleinopathies

    Narrative Review: Quantitative EEG in Disorders of Consciousness

    No full text
    In this narrative review, we focus on the role of quantitative EEG technology in the diagnosis and prognosis of patients with unresponsive wakefulness syndrome and minimally conscious state. This paper is divided into two main parts, i.e., diagnosis and prognosis, each consisting of three subsections, namely, (i) resting-state EEG, including spectral power, functional connectivity, dynamic functional connectivity, graph theory, microstates and nonlinear measurements, (ii) sleep patterns, including rapid eye movement (REM) sleep, slow-wave sleep and sleep spindles and (iii) evoked potentials, including the P300, mismatch negativity, the N100, the N400 late positive component and others. Finally, we summarize our findings and conclude that QEEG is a useful tool when it comes to defining the diagnosis and prognosis of DOC patients
    corecore