27 research outputs found

    Elucidating the complex organization of neural micro-domains in the locust Schistocerca gregaria using dMRI.

    Get PDF
    To understand brain function it is necessary to characterize both the underlying structural connectivity between neurons and the physiological integrity of these connections. Previous research exploring insect brain connectivity has typically used electron microscopy techniques, but this methodology cannot be applied to living animals and so cannot be used to understand dynamic physiological processes. The relatively large brain of the desert locust, Schistercera gregaria (Forksȧl) is ideal for exploring a novel methodology; micro diffusion magnetic resonance imaging (micro-dMRI) for the characterization of neuronal connectivity in an insect brain. The diffusion-weighted imaging (DWI) data were acquired on a preclinical system using a customised multi-shell diffusion MRI scheme optimized to image the locust brain. Endogenous imaging contrasts from the averaged DWIs and Diffusion Kurtosis Imaging (DKI) scheme were applied to classify various anatomical features and diffusion patterns in neuropils, respectively. The application of micro-dMRI modelling to the locust brain provides a novel means of identifying anatomical regions and inferring connectivity of large tracts in an insect brain. Furthermore, quantitative imaging indices derived from the kurtosis model that include fractional anisotropy (FA), mean diffusivity (MD) and kurtosis anisotropy (KA) can be extracted. These metrics could, in future, be used to quantify longitudinal structural changes in the nervous system of the locust brain that occur due to environmental stressors or ageing

    Elucidating the complex organization of neural micro-domains in the locust Schistocerca gregaria using dMRI

    Get PDF
    To understand brain function it is necessary to characterize both the underlying structural connectivity between neurons and the physiological integrity of these connections. Previous research exploring insect brain connectivity has typically used electron microscopy techniques, but this methodology cannot be applied to living animals and so cannot be used to understand dynamic physiological processes. The relatively large brain of the desert locust, Schistercera gregaria (Forksȧl) is ideal for exploring a novel methodology; micro diffusion magnetic resonance imaging (micro-dMRI) for the characterization of neuronal connectivity in an insect brain. The diffusion-weighted imaging (DWI) data were acquired on a preclinical system using a customised multi-shell diffusion MRI scheme optimized to image the locust brain. Endogenous imaging contrasts from the averaged DWIs and Diffusion Kurtosis Imaging (DKI) scheme were applied to classify various anatomical features and diffusion patterns in neuropils, respectively. The application of micro-dMRI modelling to the locust brain provides a novel means of identifying anatomical regions and inferring connectivity of large tracts in an insect brain. Furthermore, quantitative imaging indices derived from the kurtosis model that include fractional anisotropy (FA), mean diffusivity (MD) and kurtosis anisotropy (KA) can be extracted. These metrics could, in future, be used to quantify longitudinal structural changes in the nervous system of the locust brain that occur due to environmental stressors or ageing

    Author Correction:A consensus protocol for functional connectivity analysis in the rat brain

    Get PDF

    A consensus protocol for functional connectivity analysis in the rat brain

    Get PDF
    Task-free functional connectivity in animal models provides an experimental framework to examine connectivity phenomena under controlled conditions and allows for comparisons with data modalities collected under invasive or terminal procedures. Currently, animal acquisitions are performed with varying protocols and analyses that hamper result comparison and integration. Here we introduce StandardRat, a consensus rat functional magnetic resonance imaging acquisition protocol tested across 20 centers. To develop this protocol with optimized acquisition and processing parameters, we initially aggregated 65 functional imaging datasets acquired from rats across 46 centers. We developed a reproducible pipeline for analyzing rat data acquired with diverse protocols and determined experimental and processing parameters associated with the robust detection of functional connectivity across centers. We show that the standardized protocol enhances biologically plausible functional connectivity patterns relative to previous acquisitions. The protocol and processing pipeline described here is openly shared with the neuroimaging community to promote interoperability and cooperation toward tackling the most important challenges in neuroscience

    Imaging Arterial Fibres Using Diffusion Tensor Imaging—Feasibility Study and Preliminary Results

    Get PDF
    MR diffusion tensor imaging (DTI) was used to analyze the fibrous structure of aortic tissue. A fresh porcine aorta was imaged at 7T using a spin echo sequence with the following parameters: matrix 128 × 128 pixel; slice thickness 0.5 mm; interslice spacing 0.1 mm; number of slices 16; echo time 20.3 s; field of view 28 mm × 28 mm. Eigenvectors from the diffusion tensor images were calculated for the central image slice and the averaged tensors and the eigenvector corresponding to the largest eigenvalue showed two distinct angles corresponding to near 0∘ and 180∘ to the transverse plane of the aorta. Fibre tractography within the aortic volume imaged confirmed that fibre angles were oriented helically with lead angles of 15±2.5∘ and 175±2.5∘. The findings correspond to current histological and microscopy data on the fibrous structure of aortic tissue, and therefore the eigenvector maps and fibre tractography appear to reflect the alignment of the fibers in the aorta. In view of current efforts to develop noninvasive diagnostic tools for cardiovascular diseases, DTI may offer a technique to assess the structural properties of arterial tissue and hence any changes or degradation in arterial tissue

    Evaluation of a Validation Method for MR Imaging-Based Motion Tracking Using Image Simulation

    No full text
    Magnetic Resonance (MR) imaging-based motion and deformation tracking techniques combined with finite element (FE) analysis are a powerful method for soft tissue constitutive model parameter identification. However, deriving deformation data from MR images is complex and generally requires validation. In this paper a validation method is presented based on a silicone gel phantom containing contrasting spherical markers. Tracking of these markers provides a direct measure of deformation. Validation of in vivo medical imaging techniques is often challenging due to the lack of appropriate reference data and the validation method may lack an appropriate reference. This paper evaluates a validation method using simulated MR image data. This provided an appropriate reference and allowed different error sources to be studied independently and allowed evaluation of the method for various signal-to-noise ratios (SNRs). The geometric bias error was between 0–5.560×10−3 voxels while the noisy magnitude MR image simulations demonstrated errors under 0.1161 voxels (SNR: 5–35)
    corecore