26 research outputs found

    Adaptation of the proximal humerus to physical activity: a within-subject controlled study in baseball players

    Get PDF
    The proximal humerus is a common, yet understudied site for osteoporotic fracture. The current study explored the impact of prolonged physical activity on proximal humerus bone health by comparing bone properties between the throwing and nonthrowing arms within professional baseball players. The proximal humerus in throwing arms had 28.1% (95% CI, 17.8 to 38.3%) greater bone mass compared to nonthrowing arms, as assessed using dual-energy x-ray absorptiometry. At the level of the surgical neck, computed tomography revealed 12.0% (95% CI, 8.2 to 15.8%) greater total cross-sectional area and 31.0% (95% CI, 17.8 to 44.2%) greater cortical thickness within throwing arms, which contributed to 56.8% (95% CI, 44.9 to 68.8%) greater polar moment of inertia (i.e., estimated ability to resist torsional forces) compared to nonthrowing arms. Within the humeral head and greater tubercle regions, throwing arms had 3.1% (95% CI, 1.1 to 5.1%) more trabecular bone, as assessed using high-resolution magnetic resonance imaging. Three-dimensional mapping of voxel- and vertex-wise differences between arms using statistical parametric mapping techniques revealed throwing arms had adaptation within much of the proximal diaphysis, especially the posterolateral cortex. The pattern of proximal diaphysis adaptation approximated the pattern of strain energy distribution within the proximal humerus during a fastball pitch derived from a musculoskeletal and finite element model in a representative player. These data demonstrate the adaptive ability of the proximal humerus to physical activity-related mechanical loads. It remains to be established how they translate to exercise prescription to improve bone health within the proximal humerus, however, they provide unique insight into the relationship between prolonged loading and skeletal adaptation at a clinically relevant osteoporotic site

    Physical activity when young provides lifelong benefits to cortical bone size and strength in men

    Get PDF
    The skeleton shows greatest plasticity to physical activity-related mechanical loads during youth but is more at risk for failure during aging. Do the skeletal benefits of physical activity during youth persist with aging? To address this question, we used a uniquely controlled cross-sectional study design in which we compared the throwing-to-nonthrowing arm differences in humeral diaphysis bone properties in professional baseball players at different stages of their careers (n = 103) with dominant-to-nondominant arm differences in controls (n = 94). Throwing-related physical activity introduced extreme loading to the humeral diaphysis and nearly doubled its strength. Once throwing activities ceased, the cortical bone mass, area, and thickness benefits of physical activity during youth were gradually lost because of greater medullary expansion and cortical trabecularization. However, half of the bone size (total cross-sectional area) and one-third of the bone strength (polar moment of inertia) benefits of throwing-related physical activity during youth were maintained lifelong. In players who continued throwing during aging, some cortical bone mass and more strength benefits of the physical activity during youth were maintained as a result of less medullary expansion and cortical trabecularization. These data indicate that the old adage of ā€œuse it or lose itā€ is not entirely applicable to the skeleton and that physical activity during youth should be encouraged for lifelong bone health, with the focus being optimization of bone size and strength rather than the current paradigm of increasing mass. The data also indicate that physical activity should be encouraged during aging to reduce skeletal structural decay

    Heterogeneous Spatial and Strength Adaptation of the Proximal Femur to Physical Activity: A Within-Subject Controlled Cross-Sectional Study

    Get PDF
    Physical activity (PA) enhances proximal femur bone mass, as assessed using projectional imaging techniques. However, these techniques average data over large volumes obscuring spatially heterogeneous adaptations. The current study used quantitative computed tomography, statistical parameter mapping, and subject-specific finite element (FE) modeling to explore spatial adaptation of the proximal femur to PA. In particular, we were interested in adaptation occurring at the superior femoral neck and improving strength under loading from a fall onto the greater trochanter. High/long jump athletes (n=16) and baseball pitchers (n=16) were utilized as within-subject controlled models as they preferentially load their takeoff leg and leg contralateral to their throwing arm, respectively. Controls (n=15) were included, but did not show any dominant-to-nondominant (D-to-ND) leg differences. Jumping athletes showed some D-to-ND leg differences, but less than pitchers. Pitchers had 5.8% (95% CI, 3.9ā€“7.6%) D-to-ND leg differences in total hip volumetric bone mineral density (vBMD), with increased vBMD in the cortical compartment of the femoral neck, and trochanteric cortical and trabecular compartments. Voxel-based morphometry analyses and cortical bone mapping showed pitchers had D-to-ND leg differences within the regions of the primary compressive trabeculae, inferior femoral neck, and greater trochanter, but not the superior femoral neck. FE modeling revealed pitchers had 4.1% (95%CI, 1.4ā€“6.7%) D-to-ND leg differences in ultimate strength under single-leg stance loading, but no differences in ultimate strength to a fall onto the greater trochanter. These data indicate the asymmetrical loading associated with baseball induces proximal femur adaptation in regions associated with weight bearing and muscle contractile forces, and increases strength under single-leg stance loading. However, there were no benefits evident at the superior femoral neck and no measurable improvement in ultimate strength to common injurious loading during aging (i.e. fall onto the greater trochanter) raising questions as to how to better target these variables with PA

    Accuracy of generic musculoskeletal models in predicting femoral strains through finite-element simulations

    No full text
    Musculoskeletal models can provide estimates of muscle and joint forces, which can then be used as input into a finiteelement model of the femur to estimate the femoral strain. A common practice is to scale a generic musculoskeletal model using skin markers identifiable on the subject [1]. Although time effective, this approach causes unavoidable anatomical errors that may in turn affect the calculated femoral strains. The aim of the present study was to compare femoral neck strains during walking using generic and subject-specific musculoskeletal models based on computed tomography images

    L'avanguardia, Apollinaire e lo struzzo di Jarry

    Get PDF
    The determination of femoral strain in post-menopausal women is important for studying bone fragility. Femoral strain can be calculated using a reference musculoskeletal model scaled to participant anatomies (referred to as scaled-generic) combined with finite-element models. However, anthropometric errors committed while scaling affect the calculation of femoral strains. We assessed the sensitivity of femoral strain calculations to scaled-generic anthropometric errors. We obtained CT images of the pelves and femora of 10 healthy post-menopausal women and collected gait data from each participant during six weight-bearing tasks. Scaled-generic musculoskeletal models were generated using skin-mounted marker distances. Image-based models were created by modifying the scaled-generic models using muscle and joint parameters obtained from the CT data. Scaled-generic and image-based muscle and hip joint forces were determined by optimisation. A finite-element model of each femur was generated from the CT images, and both image-based and scaled-generic principal strains were computed in 32 regions throughout the femur. The intra-participant regional RMS error increased from 380 Ī¼Īµ (R2=0.92, p<0.001) to 4064 Ī¼Īµ (R2=0.48, p<0.001), representing 5.2% and 55.6% of the tensile yield strain in bone, respectively. The peak strain difference increased from 2821 Ī¼Īµ in the proximal region to 34,166 Ī¼Īµ at the distal end of the femur. The inter-participant RMS error throughout the 32 femoral regions was 430 Ī¼Īµ (R2=0.95, p<0.001), representing 5.9% of bone tensile yield strain. We conclude that scaled-generic models can be used for determining cohort-based averages of femoral strain whereas image-based models are better suited for calculating participant-specific strains throughout the femur

    The dependence of knee joint stability on the cruciate and collateral ligaments

    No full text
    In this review, the methods and outcomes of cadaveric experiments that have measured anterior-posterior translation, internal-external rotation, and varus-valgus rotation at discrete flexion angles are summarized. The contribution of the cruciate and collateral ligaments to joint stability was quantified by comparing changes in kinematics as a result of ligament resection. The prevailing trend in the literature indicates that ligaments are maximally engaged towards extension, and that passive joint motion increases through the flexion arc. When ligaments are compromised due to injury or pathology, an understanding of the passive path of motion is essential to effective treatment. We have highlighted the various studies that have combined experimental data with computational techniques to explore treatment alternatives and improve our understanding of joint stability in different populations. The use of computational methods will likely continue to become more important as in vivo methods are developed to evaluate joint motion, and provide an opportunity to improve the treatment of joint disease

    Is stair climbing better for your bones than walking?

    No full text
    The specific loads that generate strain energy during exercise are not well known, thereby compromising the ability to evaluate the efficacy of different exercises towards improving bone quality. Using biomechanical gait data and clinical CT data, the aim of this study was to quantify the mechanical loads on bone during walking and stair climbing and evaluate their potential to stimulate bone growth

    Strain energy in the femoral neck during exercise

    No full text
    Physical activity is recommended to mitigate the incidence of hip osteoporotic fractures by improving femoral neck strength. However, results from clinical studies are highly variable and unclear about the effects of physical activity on femoral neck strength. We ranked physical activities recommended for promoting bone health based on calculations of strain energy in the femoral neck. According to adaptive bone-remodeling theory, bone formation occurs when the strain energy (S) exceeds its homeostatic value by 75%. The potential effectiveness of activity type was assessed by normalizing strain energy by the applied external load. Tensile strain provided an indication of bone fracture. External force and joint motion data for 15 low- and high-load weight-bearing and resistance-based activities were used. High-load activities included weight-bearing activities generating a ground force above 1 body-weight and maximal resistance exercises about the hip and the knee. Calculations of femoral loads were based on musculoskeletal and finite-element models. Eight of the fifteen activities were likely to trigger bone formation, with isokinetic hip extension (Ī”S=722%), one-legged long jump (Ī”S=572%), and isokinetic knee flexion (Ī”S=418%) inducing the highest strain energy increase. Knee flexion induced approximately ten times the normalized strain energy induced by hip adduction. Strain and strain energy were strongly correlated with the hip-joint reaction force (R2=0.90ā€“0.99; p<0.05) for all activities, though the peak load location was activity-dependent. None of the exercises was likely to cause fracture. Femoral neck mechanics is activity-dependent and maximum isokinetic hip-extension and knee-flexion exercises are possible alternative solutions to impact activities for improving femoral neck strength

    Region-specific strain energy in the proximal femur during load-based activities in elderly women

    No full text
    Exercise may slow bone loss and maintain boneā€™s structural integrity. However, the stresses and strains responsible for focal adaptive changes in bone structure in response to joint and muscle forces during exercise are not quantified. To achieve this, and so design programs to maintain bone health, we compared the strain energy density in four regions of the proximal femur during jumping, stair ascent, and stair descent

    Mechanical loading of the femoral neck in human locomotion

    No full text
    Advancing age and reduced loading are associated with a reduction in bone formation. Conversely, loading increases periosteal apposition and may reduce remodeling imbalance and slow ageā€related bone loss, an important outcome for the proximal femur, which is a common site of fracture. The ability to take advantage of bone's adaptive response to increase bone strength has been hampered by a lack of knowledge of which exercises and specific leg muscles load the superior femoral neck: a common region of microcrack initiation and progression following a sideways fall. We used an in vivo method of quantifying focal strains within the femoral neck in postmenopausal women during walking, stair ambulation, and jumping. Relative to walking, stair ambulation and jumping induced significantly higher strains in the anterior and superior aspects of the femoral neck, common regions of microcrack initiation and progression following a fall. The gluteus maximus, a hip extensor muscle, induced strains in the femoral neck during stair ambulation and jumping, in contrast to walking which induced strains via the iliopsoas, a hip flexor. The ground reaction force was closely associated with the level of strain during each task, providing a surrogate indicator of the potential for a given exercise to load the femoral neck. The gluteal muscles combined with an increased ground reaction force relative to walking induce high focal strains within the anterosuperior region of the femoral neck and therefore provide a target for exercise regimens designed to slow bone loss and maintain or improve microstructural strength. Model files used for calculating femoral neck strains are available at uitbl.mechse.illinois.edu/download
    corecore