652 research outputs found

    Ultrasound as non-destructive evaluation tool

    Get PDF

    Seeing (ultra)sound in real-time through the Acousto-PiezoLuminescent lens

    Get PDF
    In this contribution, we focus on a recently developed piezoluminescent phosphor BaSi2O2N2:Eu (BaSiON), and report on Acoustically induced PiezoLuminescence (APL). Insonification of the BaSiON phosphor with (ultra)sound waves leads to intense light emission patterns which are clearly visible by the bare eye. The emitted light intensity has been measured with a calibrated photometer revealing it is directly proportional to the applied acoustic power. As such, APL can be used to devise a simple but effective acoustic power sensor. Further, the emitted APL light pattern has a specific geometrical shape which we successfully linked to the pressure field of the incident (ultra)sonic wave. This is explicitly demonstrated for an ultrasonic (f = 3.3 MHz) transducer. By varying the insonification distance (from near- to far-field), multiple 2D slices of the transducer's radiation field light up on the BaSiON phosphor plate. By simply photographing these light patterns, and stacking them one after another, the 3D spatial radiation field of the ultrasonic transducer was reconstructed. Good agreement was found with both classical scanning hydrophone experiments and simulations. Recently we found that APL can also be activated by acoustic waves in the kHz range, thus covering a wide frequency range. Some first preliminary results are shown

    Improved accuracy in the determination of flexural rigidity of textile fabrics by the Peirce cantilever test (ASTM D1388)

    Get PDF
    Within the field of composite manufacturing simulations, it is well known that the bending behavior of fabrics and prepregs has a significant influence on the drapeability and final geometry of a composite part. Due to sliding between reinforcements within a fabric, the bending properties cannot be determined from in-plane properties and a separate test is required. The Peirce cantilever test represents a popular way of determining the flexural rigidity for these materials, and is the preferred method in the ASTM D1388 standard. This work illustrates the severe inaccuracies (up to 72% error) in the current ASTM D1388 standard as well as the original formulation by Peirce, caused by ignoring higher-order effects. A modified approach accounting for higher-order effects and yielding significantly improved accuracy is presented. The method is validated using finite element simulations and experimental testing. Since no independent tests other than the ASTM D1388 standard are available to determine the bending stiffness of fabric materials, experimental validation is performed on an isotropic, homogeneous Upilex-50S foil for which the flexural rigidity and tensile stiffness are related. The flexural rigidity and elastic modulus are determined through both the cantilever test (ASTM D1388) and tensile testing. The results show that the proposed method measures an elastic modulus close to that determined through tensile testing (within 1%), while both the Peirce formulation (+18%) and ASTM standard (+72%) over-estimate the elastic modulus. The proposed methodology allows for a more accurate determination of flexural rigidity, and enables the more accurate simulation of composite forming processes

    Frequency-phase modulated thermal wave radar : stepping beyond state-of-the-art infrared thermography

    Get PDF
    Thermal wave radar is a state-of-the-art non-destructive testing method inspired by radio wave radar systems. The underlying principle of the technique is the application of a modulated excitation waveform by which the total energy of the response signal can be compressed in time-domain through cross-correlation. This leads to an enhanced depth resolution and increased signal to noise ratio in optical infrared thermography. Frequency sweep and Barker binary phase modulation are the two popular and widely researched excitation waveforms of the technique. In this research, a novel frequency-phase modulated waveform is introduced, which is designed for optimized performance of thermal wave radar
    corecore