120 research outputs found

    Convective adjustment in baroclinic atmospheres

    Get PDF
    Local convection in planetary atmospheres is generally considered to result from the action of gravity on small regions of anomalous density. That in rotating baroclinic fluids the total potential energy for small scale convection contains a centrifugal as well as a gravitational contribution is shown. Convective adjustment in such an atmosphere results in the establishment of near adiabatic lapse rates of temperature along suitably defined surfaces of constant angular momentum, rather than in the vertical. This leads in general to sub-adiabatic vertical lapse rates. That such an adjustment actually occurs in the earth's atmosphere is shown by example and the magnitude of the effect for several other planetary atmospheres is estimated

    On the factors affecting trends and variability in tropical cyclone potential intensity

    Get PDF
    Tropical cyclone potential intensity (V[subscript p]) is controlled by thermodynamic air-sea disequilibrium and thermodynamic efficiency, which is a function of the sea surface temperature and the tropical cyclone’s outflow temperature. Observed trends and variability in V[subscript p] in each ocean basin are decomposed into contributions from these two components. Robustly detectable trends are found only in the North Atlantic, where tropical tropopause layer (TTL) cooling contributes up to a third of the increase in Vp. The contribution from disequilibrium dominates the few statistically significant V[subscript p] trends in the other basins. The results are sensitive to the data set used and details of the V[subscript p] calculation, reflecting uncertainties in TTL temperature trends and the difficulty of estimating V[subscript p] and its components. We also find that 20–71% of the interannual variability in V[subscript p] is linked to the TTL, with correlations between detrended time series of thermodynamic efficiency and V[subscript p] occurring over all ocean basins.National Science Foundation (U.S.) (grant AGS-1342810)National Science Foundation (U.S.) (AGS Postdoctoral Research Fellowship under award 1433251

    Inertial stability and mesoscale convective systems.

    Get PDF
    Thesis. 1978. Ph.D.--Massachusetts Institute of Technology. Dept. of Meteorology.Microfiche copy available in Archives and Science.Bibliography: leaves 202-207.Ph.D

    Radiative-convective instability

    Get PDF
    Radiative-moist-convective equilibrium (RCE) is a simple paradigm for the statistical equilibrium the earth's climate would exhibit in the absence of lateral energy transport. It has generally been assumed that for a given solar forcing and long-lived greenhouse gas concentration, such a state would be unique, but recent work suggests that more than one stable equilibrium may be possible. Here we show that above a critical specified sea surface temperature, the ordinary RCE state becomes linearly unstable to large-scale overturning circulations. The instability migrates the RCE state toward one of the two stable equilibria first found by Raymond and Zeng (2000). It occurs when the clear-sky infrared opacity of the lower troposphere becomes so large, owing to high water vapor concentration, that variations of the radiative cooling of the lower troposphere are governed principally by variations in upper tropospheric water vapor. We show that the instability represents a subcritical bifurcation of the ordinary RCE state, leading to either a dry state with large-scale descent, or to a moist state with mean ascent; these states may be accessed by finite amplitude perturbations to ordinary RCE in the subcritical state, or spontaneously in the supercritical state. As first suggested by Raymond (2000) and Sobel et al. (2007), the latter corresponds to the phenomenon of self-aggregation of moist convection, taking the form of cloud clusters or tropical cyclones. We argue that the nonrobustness of self-aggregation in cloud system resolving models may be an artifact of running such models close to the critical temperature for instability.National Science Foundation (U.S.) (Grant AGS1032244)National Science Foundation (U.S.) (Grant 1136480)National Science Foundation (U.S.) (Grant 0850639)Massachusetts Institute of Technology. Joint Program on the Science & Policy of Global ChangeUnited States. National Oceanic and Atmospheric Administration (Postdoctoral Fellowship

    Past and Projected Changes in Western North Pacific Tropical Cyclone Exposure

    Get PDF
    The average latitude where tropical cyclones (TCs) reach their peak intensity has been observed to be shifting poleward in some regions over the past 30 years, apparently in concert with the independently observed expansion of the tropical belt. This poleward migration is particularly well observed and robust in the western North Pacific Ocean (WNP). Such a migration is expected to cause systematic changes, both increases and decreases, in regional hazard exposure and risk, particularly if it persists through the present century. Here, it is shown that the past poleward migration in the WNP has coincided with decreased TC exposure in the region of the Philippine and South China Seas, including the Marianas, the Philippines, Vietnam, and southern China, and increased exposure in the region of the East China Sea, including Japan and its Ryukyu Islands, the Korea Peninsula, and parts of eastern China. Additionally, it is shown that projections of WNP TCs simulated by, and downscaled from, an ensemble of numerical models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) demonstrate a continuing poleward migration into the present century following the emissions projections of the representative concentration pathway 8.5 (RCP8.5). The projected migration causes a shift in regional TC exposure that is very similar in pattern and relative amplitude to the past observed shift. In terms of regional differences in vulnerability and resilience based on past TC exposure, the potential ramifications of these future changes are significant. Questions of attribution for the changes are discussed in terms of tropical belt expansion and Pacific decadal sea surface temperature variability

    Assessing sedimentary records of paleohurricane activity using modeled hurricane climatology

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry Geophysics Geosystems 9 (2008): Q09V10, doi:10.1029/2008GC002043.Patterns of overwash deposition observed within back-barrier sediment archives can indicate past changes in tropical cyclone activity; however, it is necessary to evaluate the significance of observed trends in the context of the full range of variability under modern climate conditions. Here we present a method for assessing the statistical significance of patterns observed within a sedimentary hurricane-overwash reconstruction. To alleviate restrictions associated with the limited number of historical hurricanes affecting a specific site, we apply a recently published technique for generating a large number of synthetic storms using a coupled ocean-atmosphere hurricane model set to simulate modern climatology. Thousands of overwash records are generated for a site using a random draw of these synthetic hurricanes, a prescribed threshold for overwash, and a specified temporal resolution based on sedimentation rates observed at a particular site. As a test case we apply this Monte Carlo technique to a hurricane-induced overwash reconstruction developed from Laguna Playa Grande (LPG), a coastal lagoon located on the island of Vieques, Puerto Rico in the northeastern Caribbean. Apparent overwash rates in the LPG overwash record are observed to be four times lower between 2500 and 1000 years B.P. when compared to apparent overwash rates during the last 300 years. However, probability distributions based on Monte Carlo simulations indicate that as much as 65% of this drop can be explained by a reduction in the temporal resolution for older sediments due to a decrease in sedimentation rates. Periods of no apparent overwash activity at LPG between 2500 and 3600 years B.P. and 500–1000 years B.P. are exceptionally long and are unlikely to occur (above 99% confidence) under the current climate conditions. In addition, breaks in activity are difficult to produce even when the hurricane model is forced to a constant El Niño state. Results from this study continue to support the interpretation that the western North Atlantic has exhibited significant changes in hurricane climatology over the last 5500 years.Funding for this research was provided by the Earth Systems History Program of the National Science Foundation, Risk Prediction Initiative, National Geographic Society, Coastal Ocean Institute at WHOI, and the Andrew W. Mellon Foundation Endowed Fund for Innovative Research

    Risks of coastal storm surge and the effect of sea level rise in the Red River delta, Vietnam

    Full text link
    This paper considers the impact of sea level rise and storm surge on the Red River delta region of Vietnam an area already known to be highly vulnerable to coastal risks. By combining a range of sea level rise scenarios for 2050 with the simulated storm surge level for the 100-year storm surge, we analyze permanently inundated lands and temporary flood zones. As is well-established in the literature, sea level rise will increase the risk of storms by raising the base sea level from which surge is launched, but our method quantified the increase for disaster planning and vulnerability assessment purposes. Our analysis finds that sea level rise through 2050 could increase the effective frequency of the current 100-year storm surge, which is associated with a storm surge of roughly five meters, to once every 60 years. Approximately 10 percent of the Hanoi region's GDP is vulnerable to permanent inundation due to sea level rise, and more than 40 percent is vulnerable to periodic storm surge damage consistent with the current 100-year storm. We conclude that coastal adaptation measures, such as a planned retreat from the sea, and construction of a more substantial seawall and dike system, are needed to respond to these threats

    Assessing the risk of cyclone-induced storm surge and sea level rise in Mozambique

    Full text link
    This article considers the impact of sea level rise and storm surge on the port cities of Maputo and Beira in Mozambique. By combining a range of sea level rise scenarios for 2050 with the potential maximum storm surge level for the current 100-year storm, we analyze permanently inundated lands and temporary flood zones. In Beira, our analysis finds that a medium Intergovernmental Panel on Climate Change scenario consistent with Intergovernmental Panel on Climate Change projections through 2050 could increase the frequency of the current 100-year storm, which is associated with a storm surge of roughly 1.9 meters, to once every 40 years. The results in Maputo show similar and even more dramatic changes in the return period of the 100-year storm (associated with more 1.1 meter surges), with a reduction to a 1-in-20-year event under the same scenario. In 2050, approximately 0.4 percent of the Beira study area's GDP is vulnerable to permanent inundation due to sea level rise, and 0.8 percent is vulnerable to periodic storm surge damage. The figures for Maputo are a bit higher -0.7 percent of the Maputo study area's GDP is vulnerable to permanent inundation due to sea level rise, and 1.1 percent is vulnerable to periodic storm surge damage
    • …
    corecore