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ABSTRACT

A clear understanding of the dynamics of cumulus convec-

tion in the atmosphere continues to evade atmospheric scientists.

Although it has been recognized that persistent organized con-

vection depends upon circulations of a length scale much greater

than that of the cumulus cloud, the nature of these circulations

and their interaction with cumuli remains enigmatic. These

motions may be driven by the convection, as appears to be the

case in tropical cyclones; in other cases the circulations may

result from an instability of the larger scale flow. This paper

addresses the latter possibility.

Observations of intense convective lines in temperate lat-

itudes indicate that conditional instability and strong vertical

shear of the horizontal wind are necessary prerequisites for the

development of organized convection. We speculate that the large

vertical shears are conducive to the mesoscale circulations as-

sociated with the convection, and on this basis proceed to carry

out an investigation of the stability of shear flow to disturb-

ances oriented parallel to the shear. It is found that as the

Richardson number of the flow decreases below a critical value

dependent on the diffusive characteristics and depth of the

fluid, circulations of a length scale commensurate with those

of observed convective lines occur. The ensuing flow patterns

and pressure distributions are also comparable with those ob-

served in connection with squall lines.
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It is found that the basic mechanism of the instability

is an imbalance of the Coriolis and pressure forces within the

fluid, a state traditionally defined as inertial instability.

Additionally, we present evidence that this instability mech-

anism may also account for diverse forms of banded overturning

motions in the atmosphere, ranging from cirrus streaks in the

jet stream to a type of Ekman Layer instability.

Thesis Supervisor: Jule G. Charney, Professor of Meteorology



ERRATA

I.) Discussions concerning the possibility that inertial

instability sets in as standing oscillations are in-

correct, although the conclusion that instability of

this type is impossible stands. The reader is referred

to Walton (1975) for a discussion of oscillatory in-

stability in fluids with small diffusion.

2.) Page 125 does not exist.
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"The local storm is isolated, but its

behavior is intimately related to the large-scale

properties of the atmosphere, and hence some of

its aspects can be treated by the weather

forecaster, though not the details of the

complicated processes at work in the small region

where water is condensed and evaporated."

-- F. H. Ludlam

"Big whirls have little whirls that feed

on their velocity, and little whirls have lesser

whirls and so on to viscosity."

-- L. F. Richardson
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INTRODUCTION

A sound knowledge of the nature of cumulus convection

and associated mesoscale circulations is essential to the

further development of meteorology as an applied science.

Despite the great advances in the understanding and

prediction of synoptic scale weather systems that have

occurred over the last three decades, the improvement in

the skill of forecasting weather for a given location has

lagged considerably, in part because of the influence of

small scale processes. Since it cannot be hoped that

microscale phenomena may be explicitly predicted by

operational numerical models, their occurrence must be

forecast indirectly by identifying, directly or statisti-

cally, those dynamic aspects of the large scale

circulation conducive to their development. If such

features may be successfully identified, then they may be

used to predict the development of small scale disturbances,

and further, to parameterize their effect on the large

scale dynamics.

Although cumulus convection may occur whenever the

atmosphere is conditionally unstable, it has been demon-

strated that persistent, organized convection, which is of

great dynamic importance and forecasting interest, depends

on moisture convergence occurring on a scale much larger
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than that of the cumulus cloud. In some circulations,

such as tropical cyclones, the cumulus themselves indirectly

provide the necessary moisture convergence through their

collective effect on the large scale flow. In the case of

extratropical convective systems, however, it is not

always clear whether the mesoscale flow.is purely a

consequence of the convection, or whether such flow

initiates and organizes the convection. It is generally

recognized that the intensity of convection is related to

characteristics of the large scale wind field, as well as

the vertical distributions of temperature and moisture,

but most investigators of severe local storms have

attributed this relationship to a direct interaction

between the cumulus and the synoptic-scale environment

(e.g. Newton, 1966). The organization of intense convec-

tion, where it is not obviously related to surface fronts

or similar features, is usually attributed to the pattern

of synoptic-scale forcing. It is significant that the

utilization of statistical relations of the occurrence of

severe convection with synoptic-scale features has proven

to be quite successful in forecasting the former. The

apparent validity of such relations suggests the existence

of a dynamical link between the synoptic- and micro-scales.

It is the premise of this paper that.the intensity and
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persistence of organized convection are determined by the

susceptibility of the synoptic-scale temperature, moisture,

and wind fields to mesoscale circulations - whether or not

the latter result from or initiate the cumulus. We assert

that while conditional instability is necessary for any

convection, its presence may not be sufficient to allow

mesoscale circulations to develop. On the other hand,

certain large scale distributions of velocity and density

may be.unstable to mesoscale perturbations in a convectively

unstable atmosphere. The degree of this instability, to-

gether with the amount of buoyant energy available to

cumulus, determines the intensity of the convection. The

conditional instability allows the convection to occur in the

first place; the synoptic-scale environment facilitates

the development of mesoscale circulations which in turn

support the convection.

In order to assess the stability of the large scale

flow to mesoscale disturbances, it is nescessary to take

into account several parameters normally neglected on the

cumulus scale, such as the absolute vorticity of the flow.

Analytic examination of mesoscale flows is hampered by the

inability to apply simplifying assumptions on the basis

of scale; the motion fields are too small to be considered

inviscid and quasi-geostrophic, but too large to neglect
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rotation. Fortunately, many extratropical convective

systems are organized into lines and hence the mesoscale

flow, in these cases, may be considered to be two-

dimensional. In particular, pre-coldfrontal squall lines

comprise an interesting class of convection on which to

test the abovementioned premise, as their organization on

the mesoscale is apparently simple, and as they have

received much attention in observational studies of intense

convection. With this in mind, the approach taken here

will be as follows:

(a) Examine observations of extratropical

convective lines in order to ascertain

the general properties of the associated

large scale velocity and density fields.

(b) Perform a stability analysis on an

idealized flow field based on such

observations, and determine the criteria

for instability in this flow.

(c) Compare the results of the stability

analysis with observations of convective

lines.

Following this format, Chapter 1 is directed toward

an examination of line convection as observed in the

atmosphere and in laboratory experiments. The properties
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of the kinematic and thermodynamic environment of squall

lines, as revealed by observational studies and as reflected

in operational forecasting criteria, are investigated. It

is found that intense convective lines occur in environments

characterized by conditional instability and strong

vertical shear of the horizontal wind. On this basis, a

stability analysis of shear flow in a rotating viscous

fluid is proposed.

The classical theoretical investigations of shear flow

in rotating fluids are reviewed in Chapter 2. These-

studies indicate that three forms of instability are

possible in an adiabatic, stably stratified, baroclinic

fluid: baroclinic instability, characterized by wavelengths

on the order of the radius of deformation of the fluid;

inflectional (or Rayleigh) instability which can occur only

if the gradient of absolute vorticity changes sign within

the fluid; and "symmetric" instability characterized by

waves of great length in the direction of the shear, but

vanishing length (in the inviscid theory) in the direction

normal to the shear.

The baroclinic instability mechanism has received

great attention as it is associated with the majority of

synoptic scale weather phenomena. The other two forms of

instability are generally regarded as very small scale
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activity confined to localized regions such as the planetary

boundary layer. Of these, however, the symmetric

instability has recently been related to the development

of such mesoscale phenomena as squall lines and banded

overturning motions observed in some planetary atmospheres.

Unlike baroclinic instability, symmetric motions are

critically influenced by the presence of viscosity in the

fluid; thus the inviscid theory is inadequate for examining

their complete structure. A need therefore arises for a

comprehensive treatment of shear instability in rotating,

diffusive fluids.

This need is addressed in Chapter 3, in which a

complete linear stability analysis of shear flow in a

rotating, diffusive fluid is presented. The propagating

characteristics of the instability are also discussed

therein.

Chapter 4 details the method of solution of the

perturbation equations developed in Chapter 3, and is so

constructed that the casual reader may skip, without loss

of continuity, directly to Chapter 5 which presents

solutions of the equations for various boundary conditions

and fluid scale properties.

In Chapter 6, the structures of the disturbances, as

well as the conditions under which they may occur, are
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compared in detail with observations of convective meso-

systems. We explore those processes in the atmosphere

that lead to a state of inertial instability, and speculate

upon the effects of convection on the inertially induced

mesoscale circulation. Finally, we discuss the possible

role of inertial stability in certain forms of boundary

layer roll vortices and other banded circulations in the

atmosphere.
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CHAPTER 1

OBSERVATIONS OF CONVECTIVE LINES

The organization of convection into lines has received

considerable attention from investigators of thunderstorm

phenomena. The first systematic investigation of line

thunderstorms in the United States is embodied in the

Thunderstorm Project of 1946-47 (Byers and Braham, 1949).

Of 56 thunderstorms observed in Ohio during this project,

32 were imbedded in lines; only six of which were clearly

associated with fronts. Andre (1949) found that most

thunderstorms and the vast majority of tornadoes observed

in the United States occur within the warm sector of

extratropical cyclones, well ahead (at least 100 mi) of

the attendant cold fronts. Many of the pre-frontal

thunderstorms occur within squall lines; when such lines

are present, thunderstorms are highly concentrated along

the lines.

Line convection is also observed in the tropics,

although its predominance over other forms of convection is

not obvious. Houze (1975) finds that many of the convective

systems observed during the GATE consist of lines that are

typically 25 to 40 km wide and '150 km long.

Byers (1951) notes that squall lines are generally

more persistent than other forms of convection, lasting as
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long as 24 hours. A few lines observed during the

Thunderstorm Project contained as many as 50 individually

identifiable thunderstorms. Convective storms occurring

within squall lines appear to be structurally similar to

other thunderstorms, but tend to be more severe.

The oft observed lack of pre-existing density or wind

discontinuities at the surface is perhaps the most striking

characteristic of the line squall. Although some lines

appear to form along recognized fronts and thereafter

propagate away from the latter (Newton, 1950), many

convective lines develop well ahead of surface discontin-

uities (Fulks, 1951). In these instances, the origin of

mesoscale circulations associated with the development

of the squall lines is uncertain.

(a) Kinematic and Thermodynamic Environment

The synoptic environment of the mid-latitude convective

line is characterized by strong vertical shear of the

horizontal wind and marked convective instability.

Newton (1950 and 1963), Fulks (1951), Breiland (1958),

Boucher and Wexler (1961), Browning and Ludlam (1962),

Skaggs (1967), and Carlson and Ludlam (1968) all emphasize

the relationship of severe storms, in general, and squall

lines in particular to vertical wind shear. Ramaswamy
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(1956) finds that strong vertical wind shear also character-

izes line squalls in India, and Breiland (1958) notes the

association of instability lines with the downward

extension of a strong vertical shear zone in the

middle and upper troposphere.

The mechanism by which vertical wind shear influences

convection has been speculated upon extensively. Newton

(1950) proposed that the destruction of mean shear by

convective processes gives rise to a solenoidal circulation,

as the actual shear is set out of balance with the thermal

wind. Such motions favor upward flow to the right of the

convection (with respect to the shear vector) and thereby

encourage the systematic development of new cumuli in

such locations that the line appears to propagate to the

right of the mean flow. In a later paper, Newton (1963)

discusses the effects of dynamically induced pressure

gradients that result from direct cumulus-shear interaction

on the development of new'cumulus cells, and concludes

that the resulting vertical pressure gradients exert an

upward acceleration comparable in magnitude with the

buoyancy forces within the clouds. Moncrieff and Miller

(1976) show that a component of shear normal to convective

lines may enhance the relative inflow and outflow velocities

and hence serves to intensify the system as well as cause
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it to propagate. Observations of squall lines in mid-

latitudes, however, reveal that their orientation is more

nearly along the shear (Newton, 1950), and theoretical stu-

dies (e.g. Keuttner, 1971) indicate that any curvature of

the wind profile with height acts to suppress convection

except when it occurs in lines parallel to the shear.

It is apparent from these investigations that the

presence of shear is critical to the development of intense

convection. But most of these studies have dealt-with

the short time scale direct interaction between shear

and cumuli, and have not addressed the question of an

intermediate scale interplay occurring over a longer

interval of time. Yet, the existence of circulations

much larger than the cumulus scale is strongly implied in

the case of intense, persistent convection. Cotton, et.al.

(1976) find that mesoscale circulations modify convection

by enhancing the convergence of moisture and momentum in

the planetary boundary layer, as well as deepening the

latter, and by altering the vertical shear of the hori-

zontal wind.

Direct evidence of mesoscale circulations is scant,

though the association of convection with the seabreeze.

circulations in Florida studied by Cotton (ibid) is clear.

A strong mesoscale circulation associated with a frontal
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thunderstorm line was deduced by Sanders and Paine (1975)

from mesonet data obtained by the National Severe Storms

Laboratory.

The thermodynamic conditions accompanying mid-latitude

squall lines vary a great deal among individual lines,

but nevertheless show certain common features. In most

instances, a shallow layer of moist air near the surface

overlain by drier air of small static stability precedes

the passage of a line. Breiland (1958) finds that

convective lines favor an environment of convective

instability in which the moist layer at low levels is

capped by an inversion and overlain by very dry air.

Eisen (1972) notes that a stable layer at about 750 mb

precedes the development of an intense squall line in

Oklahoma. The juxtaposition of moist and dry air is also

a common observation in association with line squalls in

India (Ramaswamy, 1956).

Conditional instability appears to be a necessary but

insufficient condition for intense convection. The tropics

are frequently characterized by a state of conditional

instability, but the occurrence of severe, organized

convection is relatively rare. A few outbreaks of severe

convection in middle latitudes, on the other hand, occur in

an atmosphere that is only marginally unstable (Hoxit and
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Chappell, 1975).

In addition to characteristic vertical distributions

of density and moisture discussed above, the environment

in which intense line convection occurs often exhibits

prominent horizontal gradients of moisture. The development

of thunderstorms along the "dry line" of the Plains States

is a most striking example in this respect, but many squall

lines are observed to form along the western periphery

of moist tongues occasionally observed in the warm sectors

of developing cyclones. Fulks (1951), for example, finds

that squall line thunderstorms are more likely to occur

within or to the west of anomalies in the moisture field

than east of them. In the case of the dry line, storms

appear to develop in the region of the strongest moisture

gradient.

(b) Structure, Orientation, and Movement

Most squall lines are defined by a general linear

arrangement of discrete convective cells, although there

have been observed cases of a nearly continuous band of

precipitation. The line thunderstorms recorded on radar

during the Thunderstorm Project of 1946-47 were spaced up

to 15 km apart; a single line was generally composed of

between 5 and 50 such cells (Byers, 1949). The motion of
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the individual radar echoes within convective lines is

generally rapid and directed along the line, with a tendency

to move more slowly than the line in the direction of

propagation of the latter often observed. (Cells form in

the right-rear quadrant of the line (with respect to the

shear vector), and decay in the left-front quadrant.)

Pestaina-Haynes and Austin (1976) find that the motion of

cells in squall lines is usually faster than the mean

environmental wind in the cloud layer, in contrast to

isolated supercell thunderstorms which move more slowly

than and to the right of the mean cloud layer wind.

Newton (1950) notes that squall lines are nearly

parallel to the 500 ab flow, and tend to move, as entities,

to the right of the mean wind. Byers (1951), Boucher and

Wexler (1961), and Pestana-Haynes and Austin (1976) observe

that mid-latitude convective line movement is best corre-

lated with the component of 700 mb flow normal to the lines,

and Byers (1949) finds that lines are generally oriented

10-150 counterclockwise from the wind vector at this level.

The intense and devastating squall lines of 3-4 April 1974

were nearly parallel to the flow at all levels; the

environmental wind exhibited little directional shear with

height (Hoxit and Chappell, 1975). At the height of the

activity on these dates, as many as five squall lines were
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in progress simultaneously. These appeared to be more or

less parallel, and spaced roughly 100 km apart. Although

an outbreak of this magnitude is uncommon, it is not

unusual to observe two or three squall lines during out-

breaks of severe weather.

The pressure variations accompanying squall lines

were first observed in detail during the Ohio phase of the

Thunderstorm Project (Byers and Braham, 1949) and later

examined by Fujita (1955). Typically, the surface pressure

falls - sometimes rapidly - for an hour or so preceding

the onset of precipitation, at which time there occurs an

abrupt pressure rise accompanied by strong, gusty winds.

Following the passage of thunderstorms, the pressure often

falls again in response to the passage of a "wake low"

(Fujita, 1955). Finally, the pressure returns to roughly

the pre-storm value along with a less rapid recovery of

surface temperature. A typical barogram recorded during

the passage of a squall line is reproduced in Figure 1.

Mesoscale pressure variations such as those discussed

above are most likely a hydrostatic consequence of

temperature changes forced by vertical motion and latent

heating and cooling. Fujita (1955) attributes the

"thunderstorm high" to sub-cloud cooling induced by

evaporating precipitation, and Clark and List (1971) have
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shown that high concentrations of liquid water and ice

found within thunderstorms may force a substantial vertical

pressure gradient. The pressure falls prior and subsequent

to the passage of thunderstorm lines may be attributed to

adiabatic warming within sub-saturated downdrafts.

Observations of squall lines within the network of the

National Severe Storms Laboratory in Oklahoma reveal

intense downdrafts ahead of the radar echoes, and broader

descent to the rear of the lines (Fankhauser, 1969; Sanders

and Paine, 1975; Stokes, 1976).

The general features of air flow in convective lines

have been investigated on both the observational and

theoretical levels. The results of these studies suggest

the presence of a sloping updraft-downdraft pair with

warm air entering the front of the system and rising back

over a cold downdraft entering from the rear at mid-levels

and driven by evaporative cooling. The anvil clouds of

extratropical squall systems are most often observed to

flow out ahead of the line (Ludlam, 1963); it is usually

assumed that this feature reflects the outflow pattern

aloft. The mesoscale circulation deduced by Newton (1963)

from a time series of rawinsonde observations during the

Thunderstorm Project is shown in Figure 2.
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(c) Boundary Layer Roll Vortices

Lines of low-level cumulus clouds are frequently

observed during windy conditions. Glider pilots find that

extended bands of upward and downward motion exist under

certain conditions, and are observed to lie parallel to

the wind direction (Woodcock, 1941). These bands do not

always contain visible cloud.

Cloud streets over the tropical Atlantic were observed

frequently during the BOMEX. Winds in the vicinity of

the bands appeared to increase with altitude, but with

little directional shear. The lines are parallel to the

wind direction within the boundary layer, and are spaced at

distances of typically two to four times their depth

(Kuettner, 1971).

Tank experiments with Ekman flow reveal two distinct

fQrms of boundary layer roll vortices. As the Reynolds

number of the flow is increased, the first type appears

as rolls of large spacing (25 to 33 times the Ekman layer

depth), oriented along or slightly clockwise from the

geostrophic flow above the boundary layer. At higher

Reynolds numbers, a second form appears with smaller spacing

(12 times the Ekmnan depth) and an orientation about 150

counterclockwise from the geostrophic flow (Tatro and

Mollo-Christensen, 1967). This latter class of boundary
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layer rolls is likely a form of inflectional instability,

but the first type is not well understood (Greenspan, 1968,

p. 286). Lilly (1966) was able to determine the critical

Reynolds numbers characterizing the onset of both forms of

instability by numerically solving the linear eigenvalue

equations governing Ekman flow. His results are in

excellent agreement with the observations of Tatro and

Mollo-Christensen (1967). Lilly notes that the "Class A"

or low Reynolds number instability is directly dependent

on the presence of rotation in the fluid and, unlike

inflectional instabilities, the Class A variety has been

observed to completely penetrate the interior flow in tank

experiments.

(d) Summary of Observations

The observations reviewed here strongly suggest a

relationship between organized mesoscale overturning motions

in fluids and the presence of shear. While many studies of

intense convect-in have emphasized a direct interaction

between macroscale flow and individual cumulus elements,

the possibility that convection is indirectly coupled

with the large scale shear through mesoscale circulations

must also be considered. Any theoretical investigation of

mesoscale motions associated with organized convection must
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by broadly compatible with observations such as those

discussed within this chapter.
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CHAPTER 2

THE STABILITY OF SHEAR FLOW:
CLASSICAL THEORY

The intimate association of banded convection and

vertical wind shear, noted in Chapter 1, leads one to

examine in detail the types of instability that may occur

in fluid flows exhibiting shear. Shearing instability has

been of great interest to fluid dynamicists beginning with

Rayleigh who first described the physical mechanism of

shearing instability in inviscid parallel flows (Rayleigh,

1880). Since then, much has been learned about this

phenomenon; it is the purpose of this chapter to briefly

review the current understanding of such processes.

Broadly, the forms of unstable motion that occur in

adiabatic shear flow may be classified according to their

energetic characteristics. Those motions which derive

kinetic energy from the available potential energy of a

statically stable initial state will be classified as

baroclinic; those which arise due to an unstable arrangement

of momentum in the initial state will be categorized

according to the specific mechanism of the instability.

If the transfer of kinetic energy from the mean flow to the

eddies is direct, and does not involve the operation of

centrifugal forces, the associated instability is of the

inflectional type. This class, for example, includes
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Kelvin-Helmholtz instability which is generally described

in terms of the differential motion of two discrete layers

of fluid of differing density; hence the instability must

do work against gravity. Those disturbances which depend

on the rotation of the fluid and originate from an unstable

distribution of angular momentum will be classified as

inertial motions. Convective instability resulting purely

from a gravitationally unstable distribution of mass will

not be dealt with specifically.

The classification of instability types according to

their energetics is not always justified. Unstable waves

in a baroclinic fluid, for example, may intensify due to

both baroclinic and barotropic instability (Brown, 1969).

Local convective instability may act indirectly to

intensify much larger disturbances, including otherwise

baroclinic waves (Tracton, 1973). Despite the presence of

multiple energy sources in some growing disturbances, it

is usually possible to distinguish one source that dominates

the growth and structure of the system.

. An exhaustive treatment of shear flow instability is

not intended here; rather, we seek an understanding of those

disturbances which tend to occur in the form of parallel

.rows and possess length scales comparable to those observed

in connection with line convection in the atmosphere.
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Motions resulting from diabatic, topographic, or frictional

forcing are not dealt with here. The observed development

of convective lines at night and over flat terrain implies

that at least some such circulations are independent of

diurnal heating and topography.

(a) Instabilities of Stably Stratified Rotating Fluids

Of the various instabilities observed in rotating

fluids, the baroclinic instability has received the

greatest attention as a consequence of its obvious connec-

tion to the migratory large scale pressure systems observed

in the atmosphere. Charney (1947) was the first to

examine the baroclinic mechanism analytically and present

detailed information on the growth rates and structure

of the instabilities. Characteristic growth rates of
-i

about (1 day)-1 and length scales comparable to the fluid

radius of deformation preclude the possibility that this

mechanism is directly associated with mesoscale circula-

tions.

Rayleigh instability, observed in rotating and non-

rotating fluids, can occur only when an absolute velocity

profile through the flow contains an inflection point.

If the flow contains only vertical shear and is stably

stratified, instability can develop only if the minimum
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Richardson number somewhere within the fluid is less than

1/4. Instability will occur in horizontally sheared flow

only when the absolute vorticity of the flow contains at

least one maximum, as shown by Kuo (1949). Disturbances

of this kind exhibit variations along the direction of

the shear vector and show no tendency to align with the

latter.

The last form of instability can only occur in

rotating fluids and results from an unstable distribution

of centrifugal and pressure forces within the fluid. The

first investigation of the mechanism of inertial instability

was conducted by Rayleigh (1916), who derived the stability

criterion for a homogeneous, incompressible, and inviscid

circular vortex flow. Later, Solberg (1933) extended

Rayleigh's results to an inhomogeneous fluid. The

fundamental conclusion of these analyses is that circular

vortex flow is stable to axisymmetric disturbances as long

as the square of the angular momentum of the flow increases

with radius along an isentropic surface, otherwise it is

unstable. Due to the symmetry of the disturbances in the

circular vortex (there is no azimuthal variation of the

perturbations), this class of disturbance has also been

called symmetric instability. The alignment of the

disturbance axis along the shear suggests an association
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of this form of shear instability with line convection.

(b) Structure and Mechanism of Inertial Instability

In its simplest form, inertial motion may be under-

stood by examining the forces acting upon a fluid ring

displaced radially in a circular vortex of homogeneous

inviscid fluid. The displaced ring conserves its angular

momentum while it is acted upon by the pressure gradient

characteristic of its new environment. If the resulting

force acts to displace the parcel back towards its original

position, the configuration is stable; otherwise, it is

unstable.

If one displaces a fluid ring radially from point A

to point B within a circular vortex, and it is assumed that

the pressure gradients within the vortex are not changed

by the displacement, then the radial momentum equation at

point B may be written:

dV 1 p 2(-dV) = (p) + rB2
dtB p r B B

where w is the local angular velocity of the fluid, V is

the radial velocity component, p is the density, and rB

the radius at point B. The above may also be written in
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terms of the angular momentum M, where

M = pr2w

then

dV
dtBB

1 p)
p ar

M AA 1
+ -3 2

r P

Under the assumption that the radial pressure gradient is

unaffected by the displacement,

- ar
p ar B )

1 MB
2

= r3
prB

The radial momentum equation may then be written:

dV
dtB

S ( MA2 - MB 2 )

P2 r BB

If the displacement from A to B is outward, then there will

be a restoring acceleration provided that

MB2 A2

Otherwise, the fluid ring will continue to accelerate out-

ward. A necessary condition for instability in a homo-
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geneous and inviscid circular vortex is then

aM2--m2 < 0
ar

In an inhomogeneous fluid, with horizontal and vertical

density gradients, the mechanism is similar. If, when a

parcel is displaced along an isentropic surface, the sum

of resulting centrifugal and pressure gradient accelerations

does not act to return the parcel toward its initial

position, then an instability may develop. Provided that

the fluid motions may be considered hydrostatic, the neces-

sary condition for instability in this instance is

1 aM2
S3 ) - < 0

where r is the-absolute radius of curvature of the flow,

and the subscript denotes displacement along an isentropic

surface. In a rotating co-ordinate system, it may be shown

that for a zonal current u in hydrostatic and geostrophic

equilibrium,

lim 1 aM2  1 1au
- ( f2 p2 ( 1-r+o r Tr ) Ri fay

where f is the Coriolis parameter and Ri E g(3nO/3z)
(For this special case, Stone (1966) discusu/az)ses the growth rates

For this special case, Stone (1966) discusses the growth rates
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of symmetric disturbances in an inviscid flow with constant

vertical shear and no horizontal velocity variation, and

compares the characteristics of the unstable motions with

those of other forms of instability. He finds that the

disturbances arise in the form of overturning motions pri-

marily along isentropic surfaces, with the largest growth

rates occuring for rolls with vanishing width in a dir-

ection transverse to the shear. The dependence of the growth

rate on the transverse wavelength is not great for small

wavelengths, so that it is useful to define a maximum

wavelength for instability. For the type of initial flow

considered and for fluid bounded above and below by rigid

horizontal plates, the symmetric instability sets in when

the Richardson number. (Ri, as previously defined) falls

below unity. The expressions derived by Stone for the

growth rate a .and maximum wavelength L are:

1 1/2
S  

(k f( - 1)
SRi

UH
L 2 (1 - Ri) 1/2
max f

where f is the Coriolis parameter, Uz is the constant

shear value, and H is the depth of the fluid. The initial

growth rates of symmetric disturbances are found to exceed
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those of baroclinic and Kelvin-Helmholtz instabilities

when the Richardson number lies between .25 and .95.

As discussed previously, the inertial instability

draws energy from the kinetic energy of the mean flow; in

so doing the inertial eddies transport momentum down

gradient.

Yanai and Tokioka (1969) performed a numerical-

experiment in order to simulate meridional motions in an

axially symmetric vortex. In this experiment, the nonlinear

inviscid equations of motion are integrated in a domain

bounded above and below by rigid boundaries. The results

are in accord with the linear theory, but with horizontal

wavelengths limited by the numerical grid size. An inte-

gration is also performed for a case in which the region of

instability is restricted to a small area. It is found

that the resulting motions do not penetrate far into the

surrounding stable fluid.

The addition of viscosity to the linear symmetric

stability problem greatly complicates its solution, as the

resulting equations are of much higher order. The first

attempt at solving the viscous system of equations governing

symmetric instability in a baroclinic fluid was made by

Kuo (1954). The linear problem is solved exactly for the

case of non-oscillatory instability in fluid with neutral
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stratification. Solutions are obtained for horizontally

periodic disturbances, as well as for those confined, in

the horizontal, between rigid free-slip walls separated

by a distance equal to the depth; in both cases the fluid

is bounded above and below by free-slip rigid plates.

Kuo finds that the flow becomes unstable when a

parameter Q defined by

U
Q = T -z (1 + P)of

exceeds a critical value dependent on the Taylor number

£2
T 0

Here, U is the constant shear value, f is the Coriolis

parameter, H is the fluid depth, and P is the Prandtl

number V/K (the ratio of the coefficients of diffusion of

momentum and heat). The horizontal wavelength of the

marginally unstable disturbance is on the order of the

fluid depth, unless the diffusion is very small (To > 10 5).

Kuo's results for the critical value of Q are reproduced

in Figure 3. The motions set in as overturning cells

tilted down and to the right of the shear, quite similar

to the pattern obtained by Yanai and Tokioka (1969), except
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Figure 3: The critical value of Kuo's stability parameter Q as a function of the Taylor Number
T , for a neutrally stratified fluid. (Kuo, 1954)
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that the cells are tilted across the potential isotherms,

which are vertical in this case, rather than being more or

less aligned with them. This result coincides with Stone's

(1971) finding that accelerations in the vertical cause

the rolls to have a smaller slope than the potential

isotherms. For large Taylor numbers, the momentum of the

perturbation velocity component along the instability line

is much greater than that of the transverse velocity

component.

One interesting aspect of Kuo's result is the

dependence of the flow stability on the Prandtl number, a

phenomenon which is unaffected by letting To tend toward

infinity - indicating that the behavior of disturbances

with finite viscosity, however small, is fundamentally

different from that displayed by fluid with no viscosity.

This characteristic is also apparent in an analysis of

McIntyre (1969) for viscous symmetric motions in an un-

bounded fluid with stratification and shear. In the limit

as the diffusion parameters approach zero, monotonic in-

stability sets in when

(1 + P)
Ri < 4P

and oscillatory instability occurs when
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(1 + 3P) 2
Ri <

8P(1 + P)

As the former parameter is always larger than the latter

(except when P=1 in which case it may be shown that

oscillatory instability is not possible), monotonically

growing disturbances will occur initially as the fluid is

destabilized.*

An extension of this analysis to include small non-

linearity and boundary effects (large Taylor number) was

carried out by Walton (1975), who determined the critical

Richardson number as a function of the inverse Taylor

number and Prandtl number when the former is small. The

fluid is bounded above and below by rigid, no-slip

boundaries, and a perturbation expansion in T 1 / 6 is

used. The critical Richardson numbers derived by Walton

for monotonic and overstable oscillations to second order

in T -1/6 are as follows:

SP) 2  2 2/3 -1/3
MONOTONIC: Ri = [1 - 3( T

It will be demonstrated within Chapter 3 that McIntyre's
criterion for oscillatory instability does not apply to
bounded fluids.
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( + 3P) 2 2 2/3 1 2/3 -1/3
OSCILLATORY: Ri = { - 3 ( ) (1+-) T }

o 8P(1 + P) 2 p o

(Comments in the previous footnote also apply to the second

expression above.) These expressions are valid for

T - << 0l-  . In this range of Taylor numbers, the
o

horizontal wavelength of the motion is a strong function

of the diffusion; when the viscosity becomes sufficiently

large, the wavelength is more dependent on the depth of

the fluid and the slope of the potential isotherms (see

Chapter 5). Walton also finds that the instability pro-

duces a secondary circulation that transports zonal mom-

entum poleward, which is in the opposite sense to the

first order eddy transport (u'v').

As might be expected, the effect of diffusion is to

stabilize the fluid, for a constant Prandtl number. The

inclusion of diffusive effects also imposes limits on the

horizontal wavelength of the motions; Walton's results

indicate that for values of the parameters typical of the

atmosphere, the horizontal wavelength is on the order of

10 times the depth through which the fluid is unstable.

Because of the limited Taylor numbers for which the theory

is valid, this conclusion is applicable to the atmosphere

only if this depth is greater than about 10 km.
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(c) Speculation on the Role of Inertial
Instability in Organized Convection

The properties of inertial stability, as here discussed,

bear some semblance to mesoscale circulations associated

with organized convection. The connection between convec-

tion and inertial effects was perhaps first perceived by

Newton (1950) who, however, viewed the shear as a

propagating rather than intensifying mechanism. Newton

proposes that the reduction of shear by turbulent mixing

within large cumulonimbi causes the actual momentum field

to be out of balance with the mass field. The resulting

solenoidal circulations favor the development of new

convection to the right of the shear with respect to the

existing convection. Essentially, this is a description of

inertial overturning induced by diffusion.

Williams (1968) performed a numerical experiment

similar to that of Yanai and Tokioka (1969) but allowed

double diffusivity (Pl1). Williams notes the similarity

of the inertial circulations with those occurring in a

squall line depicted by Newton (1966). Inertial motions

were thought to produce large downward fluxes of westerly

momentum west of a squall line studied by McGinley and

Sasaki (1975). In this instance, the strong solar heating

of the desert regions of the southwestern United States

produced large areas of low Richardson number. The westerly
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momentum transport to the surface, induced by inertial

instability, was thought to cause a line of strong

convergence between eastward moving air from the deserts,

and northward flowing air from the Gulf of Mexico. Paine

and Kaplan (1976) find that severe meso- and micro-scale

phenomena occur in regions where an imbalance of the

macroscale mass and momentum fields is indicated by an

analysis of the various components of the divergence

equation. A direct association of the intense squall lines

of 3-4 April 1974 with inertial circulations is proposed

by Raymond (1977), who also finds that the wavelengths and

orientation of the lines are comparable with those suggested

by the existing theory of inertial instability.

Although these studies suggest an association of

convection with inertial instability, the theory is not

well enough defined to allow many conclusions. Clearly, a

more general understanding of the nature of inertial

circulations is needed to assess their relationship with

organized convection. We must not only understand the

structure and behavior of such systems under general

atmospheric conditions, but we should identify those

dynamical processes that induce within the atmosphere a

state of inertial instability. As a first step in this

direction, we proceed to extend the linear stability theory
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to include diffusive effects in a more general way, and

also to take into account the effects of horizontal shear

and various boundary conditions. A more precise analysis

of the stability criteria for inertial motions, as well

as a better understanding of their structure, will make

possible a better comparison of theory with the obser-

vations of organized convection.
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CHAPTER 3

A LINEAR STABILITY ANALYSIS OF VISCOUS
ROTATING FLOW WITH LINEAR SHEAR

In light of the observed association of squall lines

with vertical shear, discussed in Chapter 1i, we examine the

stability of vertical shear flow in a rotating viscous fluid

for two-dimensional displacements transverse to the shear.

As an extension of previous investigations, horizontal

shear is also included.

The equilibrium flow is taken to be a steady current

with constant horizontal and vertical shears:

U = Uzz + U y

in which U and U are constant vertical and horizontal
z y

shear values respectively. Similarly, the equilibrium

density distribution may be written:

n- alnp 1np znp Y + z
ay az

The condition of thermal wind balance is

alnpfU = g
z ay

in which f is the Coriolis parameter and g is the acceleration
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of gravity. The square of the Brunt-Vaisaal frequency is

defined for a Boussinesq fluid

N2 = g np = constantSz

Using these relations, the density distribution may be

expressed

2
g np = fU y - N z

z

The stability of this balanced initial state is

explored by determining the time dependence of small

perturbations superposed on the equilibrium state. If the

perturbations do not grow with time, we define the initial

state to be stable, otherwise such a state will not remain

steady. Assuming that these perturbations are two-

dimensional, there will be no variation in the zonal (or x)

direction. Denoting the perturbations by primes, the

linearized adiabatic Boussinesq equations are:

( _ V)u' + v'U + w'U = fv' (1)at y z

- vV 2 )v' = 1 - fu' (2)
at ayO
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a 2 1 )p'a - V2 )w' = z PO g  (3)at P az p

P, fU 2

( 2)P + V N -W' = 0 (4)
at p g g

av' w' -+ = 0 (5)
ay az

The coefficients of momentum and heat diffusion are v and

K respectively, and a is a tag set equal to zero or unity

depending upon whether the flow is considered to be hydro-

static or not. The Coriolis parameter f is constant.

The flow in the y-z plane may be described in terms

of a streamfunction by virtue of the form of the continuity

Equation (5). Such a variable is here defined so that

v' alp w' 1 Q
az - ay

Using this notation, the entire set of equations may be

reduced to a single eighth-order equation for the stream-

function (details of the reduction may be found in

Appendix 1):
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2 ) ' 2 a2  a2
( - KV2 ) - (a - + a)

at at ay 2 aZ2

S -(V 2 ) (fU + N2  2 (6)at z ayaz y2

-( KV )(fUZ a2p + fn )
ayaz az2

where is the absolute vorticity of the flow:

n £f-U
y

It is desired to obtain critical stability criteria

from this analysis; that is, to find the relationship of

the parameters describing the equilibrium state when the

flow is marginally stable. Additionally, the structures

of the perturbation mass and velocity fields that

characterize this state are of interest. After some

simplification, we will solve the equations analytically.

If an expcnential time dependence is assumed and

boundary conditions on the streamfunction are specified,

then the relationship among the stability parameters, which

appear as constant coefficients in Equation (6), are

determined as characteristic values of the latter. The
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time dependence may enter both as growth (or decay) and

as oscillation. The marginal state is defined as no growth

or decay, and may or may not permit non-amplifying

oscillations. If neutral oscillations are solutions of

the viscous equations, then the disturbances are said to.

begin as overstability.

The approach taken here will be to represent the

perturbation streamfunction as a Fourier series in y and t,

and to find that component wave which first becomes unstable

as the fluid --flow is destabilized. The domain is taken to

be infinite in y and bounded above and below by rigid

boundaries.

So that the analysis .may be condensed, the following

simplified cases will be examined individually:

i) Disturbances are hydrostatic (a=O) and

horizontal diffusion may be ignored

(V2 = 2/Dz2)

ii) Disturbances are non-hydrostatic (a=l),

the fluid is neutrally stratified

(N2=0), and horizontal diffusion is

important (V2 = 32/ay 2 + D2/aZ2).

Each of the above cases will be analyzed for disturbances

that begin as steady overturning as well as for those that

begin as oscillations.
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The degree to which both the hydrostatic assumption

and the neglect of horizontal diffusion are valid depends

on the ratio of the vertical to the horizontal length

scales of the circulation; it can be shown that this ratio

is determined by-the slope of the potential isotherms,

f/N 2 . If this slope is small, one can neglect verticalfU/Nvertical

acceleration and horizontal diffusion in the basic equations.

The boundaries at the top and bottom of the domain

are taken to be rigid and frictionless (free-slip), and

each boundary is considered to be perfectly conducting

(p' = 0). From the hydrostatic equation, it follows that

ap/az = 0 on-the boundaries. The free-slip boundary

conditions are then:

9p a 2 , au a - 0 at boundaries
ay 'z2 az z

In addition, Case (i) is solved for no-slip boundaries:

- -P =- 0 at boundaries
Dy , 3z z

(a) Scaling

In both Cases (i) and (ii), the scaling of the space

and time variables is found to reduce the number of param-

eters involved in the analysis to at most three. The

following transformations are made in Case (i):
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2

y + y'H fu
z

Z - z'H

where H is the depth of the fluid, and primes denote non-

dimensional variables. Here, the horizontal dimension is

scaled by the ratio of the fluid depth and the slope of the

- - 2
potential isotherms, fUO/N , while the vertical dimension

is scaled simply by the fluid depth. In the inviscid

'case, the disturbances seek vanishing length scales, hence

the reader may be surprised that the diffusive parameters

do not appear in the scaling of the spacial dimensions.

In effect, we assume that there is sufficient diffusion

that the scale of the circulations is determined by the

boundaries rather than by diffusion directly. These

assumptions are not intrinsically important, since we do

not neglect any terms in the governing equations, but they

will nevertheless prove eminently justifiable in geophysical

flows.

The appropriate time scale will prove to be the

inverse of Coriolis parameter f, but in order to simplify

the form of the equations, we choose a diffusive time

scale:
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t + t' -
V

Using the indicated scaling for Case (i), Equation (6)

becomes:

3 1 32 3 2 2 32

T(at' 5z '  at' 3 z'  z 'z

a a2 24 2

= -(t z)(R yz + R

- t' P ay 1zz' 3 z I9

The non-dimensional parameters are:

f v2
i f2H4

f 1R = -R j Ri

P - V/K

(a modified inverse Taylor number)

2
(Ri = N /Uz )

(Prandtl number)

If the disturbances begin as stationary overturning,

then 3/9t' = 0 and Equation (7) may be integrated twice

to obtain the sixth order equation

(7)
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T = -R(I + P) a23 RP y2 3z 2  (8)
a6  ayaz ay2  8z2

(The two constants of integration vanish due to the

boundary conditions, as shown in Appendix 1. Also, the

primes have been dropped.) The above may be written in

terms of only two non-dimensional parameters by again

scaling:

P
1+P

in which y* is the old independent variable, and defining

(l+P)
Xi = R P

Then, Equation (8) becomes:

T z -Xi ayaz Xi 3y2 -z 2  (9)

For Case (ii), it may be expected that the horizontal

and vertical length scales are similar. Equation (6) is

transformed in this instance by the following scaling:

y - y'H

z - z'H
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t + t' I

The steady form of Equation (6) then becomes, after two

integrations:

T(V) - (l+P) , (10)

(Again, the two constants of integration vanish. See

Appendix 1).

In neutrally stratified shear flow, the stability

parameter is the ratio of the shear and the absolute

vorticity. In this instance, the flow becomes increasingly

unstable for larger values of P, while the disturbances

in hydrostatic stratified flow are more unstable when the

Prandtl number differs from unity in either direction.

Presumably, the effect of heat conduction in a stably

stratified fluid is to mitigate the effect of the stratifi-

cation, while heat diffusion in neutrally stratified flow

can only act to decrease the horizontal density gradient.

(b) Overstable Oscillations

It is easily shown that oscillatory instability is

impossible under free-slip boundary conditions if P=l

(see Appendix 2); however, when the Prandtl number differs
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from unity, neutral oscillations may occur, in which case

the instability begins as travelling or standing waves.

The criterion of oscillatory instability is generally

not the same as that for stationary instability.

It is not possible to solve the partial differential

equation governing oscillatory instability using the

techniques to be demonstrated in Chapter 4; however, it is

possible to obtain solutions in the special case where the

instability sets in as a standing oscillation, so that

the form of the streamfunction may be expressed:

iat
= Re[e t (yrz)] (11)

where both a and Y are constrained to be real. In fact,

the above expression will be generally valid if it can be

proven that a wave travelling one direction in y has the

same properties as another travelling in the opposite

direction; then the two linear waves may be superposed

to yield a standing oscillation. Such a symmetry is not

immediately evident on physical grounds, nor has it been

possible to prove for the general case. Walton (1975),

however, has shown the symmetry to exist in waves satisfying

expansions of the governing equations to second order in

To-1/ 6 . Assuming that (11) is valid in this range, it will
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presently be shown that overstable oscillations will not
-1 -5

be important when T is much larger than 10 . Thiso

result may be interpreted in either of two ways: the

neutral oscillations cannot occur at all for large diffusion,

or asymmetry in the wave propagation (if it exists) prohibits

standing oscillations when the diffusion is large. The

former interpretation appears more reasonable in light of

the lack of standing oscillations in the intermediate

-1 -4
range (T 0 10 ) where Walton's results are still valid,

and also in consideration of the lack of overstability

in the Benard convection problem in rotating flow when

T 10-3 (see Chandrasekhar, 1961).

If the standing wave form (11) is substituted into

Equation (7), governing hydrostatic instability, and real

and imaginary parts are separated, two equations result:-

a2  2 2 86' 32
To[2 z ] = o[T(1+ )96T + 2R yz

+ R + -] (12a)
aY2 a Z

TC 2 [1+ 2Pz-- = T z 6 + (1+P) R y-

+ PR - + - (12b)
3y2 3z2
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The trivial solution (a/at- a2/az2 ) = 0 has been integrated

out of Equation (12b). Comparing the two terms involving

a2 i/az 2 in each equation, it is noted that

Ta2 "' 0(1)

2
Referring to the original time scale, v/H2 , it will be seen

that dimensionally,

a O(f)

hence, the time scale is determined by the rotation rate

of the fluid.

One solution of Equation (12a) is a=0, in which case

(12b) reduces to the steady form (8). Otherwise, the

quantity o2T a2y/az2 may be eliminated between (12a) and

(12b), yielding an expression governing neutral oscilla-

tions:

(l+P)2 a6q' 2 i ___2T + R(1+3P) + R(l+P)
P 3z 6  ayaz 3y 2

+ 2P 0
az2

Applying the transformation:
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1+P
1+3P

the above becomes:

1 2 8a6  1 (3+ /P) 2  32TT(1+-) + -R
P 8z6  2 1+1/P ay'az

1 (3+1/P) 2 a2 +2
+ R + /P + ;2= 0 (13)

2 1 + 1/P 3y'2 D2

Equation (13) has exactly the same form as (9), with the

2 1 1 2/
first term multiplied by (1+ 1/P) and Xi=-R [(3+) /(1+ )].

Without solving the equation, it is immediately apparent

that, as the fluid is destabilized, oscillatory instability

never occurs before stationary motions when the fluid is

hydrostatic (fU /N2 << 1), since

(a) The diffusion parameter is always larger

in the case of oscillatory instability;

(b) The shear parameter Xi is always smaller

in the oscillatory case, except when

P=l in which instance oscillations are

not possible (see Appendix 2).

In fact, these conditions are sufficient to eliminate the

possibility of hydrostatic standing waves in the linear

theory altogether, when the boundaries are free-slip.

This is proven as follows: In the limit as a-0, both
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Equations (9) and (13) must be satisfied. This condition

is met when the critical stability curves in the T-R plane

defining the marginal states of each form of instability

intersect. We have shown that this never occurs, so

that 02 must be of one sign. We can prove that in the

special case P=l, a2 < 0:

Eliminating the term involving 32/ayDz between (12a)

and (12b), we have:

C2 1P2 +P+2 3 6

Ta 2 [1 + 3P- = -T p

- R(1-P) 3  + (1-P) 2-
y 32a5

Multiplying through by T and integrating between the

boundaries in the vertical and over one wavelength in the

horizontal we have for the case P=1:

Ta2 JJ T;2 dydz = -T z6 dydz
0 0 0 0

Employing free-slip boundary conditions (U, a2'Y/z 2,

4a/Z = 0 at the boundaries) and integrating by parts,

the preceding is equivalent to:

T; 2 L f 3 2
T ( - ) dydz = -T0 0 dydz
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Evidently, a2 < 0 in this case; since by the preceding

arguments G 2 never vanishes, it must always be negative.

This violates the separation, via (11), of the governing

equations into real and imaginary parts; hence, this branch

of the solution does not exist. The marginal state for

oscillatory instabiltiy is therefore impossible under

hydrostatic conditions when the boundaries are free-slip.

By a procedure similar to that employed in deriving

Equation (13), the relation governing oscillatory

instability for Case (ii) may be derived:

1 2  3 1 U 2 2
1 1 1 z ____

T(1+ ) (V2) = (3+ ) - z- 2  (14)

Again, this has the same form as the steady instability

Equation (10), except that the diffusion term is multiplied

by (1+1/P)2 , and the shear term by 2(3+ 1/P) instead of

l+P.

The diffusion parameter is always greater in the

oscillatory case, and when P > 1 the shear term is always

smaller; however, if P< 1, the latter is larger and the

initial dominance of one or the other instability form is

not obvious. In order to ascertain which form of instabil-

ity sets in first as the fluid is destabilized, it is

necessary to solve Equation (14).
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(c) Summary

For convenience, the scaled equations governing the

onset of steady and oscillatory instability in stably

stratified and neutrally stratified fluid are summarized

here, as well as the scaling relevant to each and the two

forms of boundary conditions to be applied in their

solution:

Case (i) - Hydrostatic disturbances in fluid with stable
stratification:

Steady Overturning:

T - = -xi yaz

f v2
T = __n f2H

z* zH

Xi 3y2 zr

Sf 1 (l+P)2
Xi n Ri P

N2p

y* yH fU (1+P)z

(asterisks denote dimensional variables)

Oscillatory instability not 1ossible.

Case (ii) - Non-hydrostatic disturbances in neutrally
stratified fluid:

t (72) 3  - a ~
-Xii 3yaz

(9).

(10) and (14)
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(y,z) -+ (y,z)H

Steady Overturning:

U
S=T; Xii 

= + (1+P)

Oscillatory:

2 z (3 + 1/P)
= T(1 ) ; ii 2

P

Boundary Conditions:

Free-slip: - --, = 0 at boundariesc Z2 ' z

N, , u, z 0 aat boundariesNo-slip:
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CHAPTER 4

SOLUTION OF THE PERTURBATION EQUATIONS

The methods by which the equations developed within

Chapter 3 are solved are described herein; the casual

reader may proceed, without loss of continuity, to Chapter 5

in which the solutions are presented.

As a matter of general interest, certain aspects of

the behavior of the solutions for vanishing and very large

diffusivity are examined briefly, after which we describe

a variational technique used to solve the equations for all

values of the diffusion coefficients.

(a) AsTymptotic Behavior for Vanishing Diffusion

If the coefficient of viscosity is vanishingly small

(but P is finite), then the equations governing stationary

and oscillatory instability may be solved forthwith. When

T=O, these equations are reduced to second order and the

boundary conditions are simply 4=O at z=0,1.

Equation (9) governing instability in a hydrostatic

fluid (Case (i)) becomes:

+ +Xi + = 0
Xi ayaz Xi y2 Dz2

It should be remembered that Equation (9) exhibits multiple
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boundary layers as T-*0, so that the above provides an

"outer" solution only. The equation governing the inner

solution is obtained by noting that the boundary layer

thickness is O[(2v/f)1/ 2 ]; scaling y and z by this

quantity gives

-4 = Xi ayaz + Xi 3y2 + 2

(If z above is scaled by the boundary layer depth, the

first order inner solution is obtainable analytically, but

a match with the outer solution is impossible.) Since the

inner solution is even miore intractable than the complete

solution, the boundary layer approach is not practical in

this problem. As a review of the inviscid theory, we

proceed to solve the outer equation, but the singularity

of the fully viscous equation precludes the conclusion

that as the diffusion becomes very small, the real solution

approaches the inviscid result.

Applying the boundary conditions i=0 at z=0,1 the

solution of the inviscid equation is

Xi
= sint(y - - z)sin nrz n=1,2,3

Xi must satisfy the eigenvalue equation
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Xi2 n21T 2
-- =
4 Ai £2

where k is the horizontal wavenumber. The smallest value

of Xi is 4 and occurs as £ + . From the definition of

Xi,

f 1 (1+P) = 4
Ri P

The above is equivalent to the result of McIntyre (1969)

for unbounded disturbances (see also Walton, 1975). The

disturbances slope upward and to the left of the shear,

corresponding to Stone's (1971) finding, with a dimension-

less slope of 1/2 associated with Xi= 4. Dimensionally,

the slope of the disturbances is:

fU
a f z 1+P
Dy N2  2P

This slope is greater than or less than that of the

potential isotherms, depending on whether the Prandtl

number is less than or greater than 1. The minimum possible

slope is half that of the potential isotherms when P-*o;

as the dimensional slope becomes large and approaches 1,

the hydrostatic assumption will not be valid.

For Case (ii) (non-hydrostatic), the general form of
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the inviscid equation is

a + = 0
Xii ayaz az2

The solution corresponding to the boundary conditions 4=O

at z=0,l is:

, = sinrz cos7(- 2- y - z)
ii

with Xii = 2r/t = L, where L is the non-dimensional wave-

length. The critical value of Xii is zero corresponding

to a vanishing wavelength and a vertical disturbance

orientation. For stationary overturning,

U-
Xii - (1+P)

and for oscillatory instability,

U
z (3+ l/P)

Xii 2

A comparison of these expressions indicates that as the

fluid is destabilized, oscillatory instability will occur

before stationary overturning in a neutrally stratified

inviscid fluid whenever P < 1. It is also possible to show
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that oscillatory instability can only occur when P< 1:

If the substitution p = e iat(y,z) is performed

(a and T are both real), Equations (12a) and (12b) modified

for the non-hydrostatic inviscid case may be written:

o2V = 2 - 3yz + z

2 (1+2P)V2 = (I+P) z

where a2 has been non-dimensionalized by fr. Eliminating

the term 32 /^yaz between the above, it is found that

22z 2

Multiplying through by T and integrating between the

boundaries in the vertical and across one wavelength in the

horizontal, and employing integration by parts together

with the boundary conditions = 0 at z=0,l we arrive at:

IL 2 2
2 [1+3P] [( ) + ( ) ]dydz

0 0 ay

f- 1 at 2
= [l-P] (z) dydz

0 0
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Clearly, a will be real if and only if P < 1.

(b) Behavior of Eigenvalues Characterizing the
Marginal State when the Diffusion is Very Large

Although general solutions by direct methods such as

those employed in the last section are not attainable for

large diffusion, certain aspects of the parameter relation-

ships under these conditions become evident. As T+oo,, we

might expect that the equations governing hydrostatic

and non-hydrostatic instability will take the respective

forms:

T a i6 _ - 2 32'*

xazs ayaz 9y

and

(V2)3 1 a 2
X. VyazXii

where each equation has been divided through by X. Since

it must be true that X - co as T -+ o, the term 2i/ z2 becomes

subdominant in either case and may be neglected in the

limit of large T.

As each of the preceding relations contains only one

parameter, the solution of the eigenvalue problem must

yield:
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- - constant

or

T - constant x X as Too

Such linear asymptotic behavior will be evident in the

complete solutions.

(c) A Variational Method for Obtaining Complete
Solutions of the Characteristic Value Equations

A general technique for solving linear eigenvalue

problems, first developed by Pellew and Southwell (1940)

and used extensively by Chandrasekhar (1961), will be

applied to solve the equations developed in Chapter 3.

Although the method is based on entropy conservation within

the fluid, the physical basis of its validity will not be

apparent in the following derivations. The reader is

referred to Chandrasekhar's text (ibid) for a discussion

of the physical implications of the.theorem.

(1) Free-Slip Boundaries

Equation (9), governing the onset of hydrostatic

disturbances, is sixth order in z and hence requires three

boundary conditions at both boundaries in order to be solved
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uniquely. Two of these, I, a2 //z2 = 0, follow directly

from the statement of the boundary conditions. If

Equation (2) is differentiated once with respect to z, it

becomes evident that 'a4i/Z4 must also vanish at the

boundaries. The conditions applied in the solution of

Equation (9) will therefore be:

, , = 0 at z=0,1 (16)

Suppose that X is specified in Equation (9). Then

associated with a function j. satisfying this equation

will be a characteristic value T.:

a2  a2 Vp. a2 p.
T.3

j zs ayaz ay 3z

If the above is multiplied through by a different solution

(i (corresponding to the characteristic value Ti) and the

resulting equation is integrated between the boundaries

in z and across one wavelength in y, then

flJ Tj i  6 - dydz =-X fl i yL dydz

00 00

1l L dy z - 1YL 2 dydz
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(Henceforth, the domain of integration may be assumed to

be in the y-z plane.) Applying the boundary conditions

(16) and a sequence of integrations by parts, the above

becomes

j 0 0 z  3  00 i ayaz

1 fL a. 89 L ; i a

'3 1 (17)
0 0 By y 0 0 9.z 3z

It may also be shown, through integration by parts, that

1 L ; 7 1 L 32li

0 0. i yz 0 j yaz

From this symmetry, it is evident in Equation (17) that

1L a;3. a 3p

so that the functions 3 j/az3 are orthogonal. Then,

Equation (17) may be written in the form:

1fL I L 2 rlL 2
X y X 0 ) - J () ii

S0 z 0 0 0
T (18)

1 L 2 2

SO f0 a3z3)
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According to the variational theorem we will prove

presently, that function i which satisfies the correct

boundary conditions and maximizes the value of T given by

Equation (18) satisfies the partial differential Equation

(9). The proof is as follows:

If T is to be maximized in (18), a small variation in

T satisfies

I
1 1

6T = [6I1  - I = 0
2 2

or

61 - T6I 2 = 0 (19)

(I1 and 12 are the numerator and denominator of (18)

respectively.) From Equation (18),

611 > 0 (6 yaz yaz

1 L Lf g

- X 2 - 6 2 6
0 0  ay 0  z a

A sequence of integrations by parts transforms the above

to:
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61 = XI 0 0 (26p) + X 0 0 ay (26f)

+ LjL az2 (26ip)

Similarly, the increment 612 is:

_ rlfL ; 7 (2f)
I2 0 0 z (26 )

Finally, the relation (19) becomes:

J[x y  + X + + - + T a (26S) = 0
00 yaz y2 3z2 az6

For an arbitrary variation 6 that satisfies the boundary

conditions (16) and which makes 6T=0, the preceding relation

is satisfied only if the expression in brackets vanishes.

This expression is the original characteristic value

Equation (9).

By parallel arguments, one may derive and prove a

variational relation valid in the non-hydrostatic case (ii)

for free-slip boundaries:
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1fL 2 p 1 L 2
xii 0 0 yaz 0 0 a

S1L 2 2 2 3 2
J ( + 3( + 3( y a 2 2

0 0 y 3 ay2az Byaz2  + z

In order to solve the characteristic value equations

using the variational approach, it is necessary to find the

form of the streamfunction 4 which satisfies the boundary

conditions and maximizes T in Equation (18), for the hydro-

static case, and (20) in the neutral stratification case.

One approach is to construct a Fourier series representation

of V, each term of which satisfies the boundary conditions.

For free-slip conditions (16), a series capable of

completely describing an otherwise arbitrary structure

within the boundaries is:

= sin nrz (a sinty + b cosZy) (21)
n=l

where Z is the horizontal wavenumber. For a specified Z,

we may treat the Fourier coefficients a and b as the

variational parameters and proceed to find that set of

coefficients which maximizes T in the relations (18) or

(20). Enough terms of the Fourier series should be taken

to assure a reasonably accurate approximation of the

characteristic value T. The operation may be performed
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for various wavenumbers k in order to find which wavenumber

first becomes unstable (i.e., we maximize T with respect

to k also). Following this procedure, we substitute the

streamfunction form (21) into the integral relation (18)

and require that

1 2T -0
9a 3a
n n

and for all n (22)

312 I2
T b 0

ab abn n

If the series (21) is truncated to N terms, these substitu-

tions yield two sets of N equations for the Fourier

coefficients:

N n+m
4nm -(-) 1 + 2

-XZ 2 2 -)b LT n2
mi m -n 2 m (2

+ 2 X + 1 L'6n 6T)a = 0
L 1 2 n

and

N n+m
S 4nmr 11) 1 2n2

m ( 2 )a + (2 Li n +

m=l1
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+ 2 X. + 2 LYr'nT)b 0
L i 2 n

n= 1,2,3,...,N

The first group in each equation is non-zero only when

n+m is an odd integer. It follows that both of the above

relations can be true if

n+l
b = a (-i)

n n

Then, the preceding equations are identical; either consti-

tutes a closed set of N linear equations for the N Fourier

coefficients. Such a system will only have a solution

for non-zero Fourier coefficients provided that the

determinant of the coefficients vanishes. That is,

IAn I = 0 (23)

where the matrix elements of A are defined as follows:

1 LT2 2nf 1 6
if n=m, A =1 LLn2 + Xi + 2 L n T

nn 2 L X+ 2 6

m+l
4nmr (-1)

if n+m= odd integer, A -Xi 2-n
am i m n
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if nfm and n+m= even integer, A = 0nm

This may also be written in the form:

1 2n2 2rr2  1
Am 2 (- L + Xi + - LT 6n6 T)6nm 2 L 2 nm

+ 4nm (-1) m - (-1) n

Xi m2 -n 2  2

It may be seen that the parameter T only appears in the

diagonal elements of the matrix A. If each row in A is

1divided through by 2 L' 6n^, then T will be a negative

eigenvalue of the matrix A. In fact, A is symmetric so

that all N eigenvalues are real. That eigenvalue corres-

ponding to the largest positive value of T is taken to be

the root of physical interest.

The method of solution of the determinant equation

(23) is as follows: First, the solution obtained from the

two term approximation of the Fourier Series (21) is

computed by hand. (In this instance, one has only to solve

a quadratic equation.) Then, a numerical solution of the

eigenvalues of the matrix A is obtained on computer, using

a commercial routine designed for the solution of such

problems.* Initially, the calculations were performed for

The routine used was obtained from the eigen analysis
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values of N ranging from 2 to 10 in order that the conver-

gence of the eigenvalues could be checked. The second

order matrix result confirmed the hand analysis, and the

eigenvalues were found to converge to 4 or 5 significant

figures within four terms.* Thereafter, the program was

run using five terms of the Fourier Series. The eigenvector

of the matrix A corresponding to the eigenvalue T of

interest is also found and normalized by the first Fourier

coefficient al. The entire operation is repeated for

different values of the horizontal wavelength L in order

to find the most unstable wave.

An example of the values of the Fourier coefficients,

corresponding to T=10-4 , is presented in Table 1 for the

hydrostatic case. The rapid decrease in the magnitude of

the Fourier coefficients is found to occur in all the

calculations presented here, the complete results of which

will be presented in Chapter 5.

The parameter T in Equation (20), for the non-

hydrostatic disturbances, is maximized using the same

streamfunction Fourier Series (21). The maximization of

section of the IMSL (International Mathematics and Sta-
tistics Libraries, Inc.) library as available in 1977.
Double-Precision was used at all times; the program was
run on an IBM 370 available at the MIT Computation Center.

* See Appendix 6
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TABLE 1

Fourier Coefficients of the Series (21)
Describing the Streamfunction of the
Marginal State when the Disturbances

are Hydrostatic

and T = 10 - 4

(b = a (-1) )n n

a
n n

1 1.0000

2 -0.8572

3 -0.2445

4 0.0076

-0.0060
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T with respect to the two sets of Fourier coefficients an

and bn yields two sets of N linear equations:

4JTXi i N (2nm 2) b - L[n22 + (n + 2)]a =0m=l nm m n
m 1

-4iXii m nm nm m 2 n

m=1

n = 1,2,3,...,N

where

1 if n+m = odd integer

nm
0 otherwise

n+l
Again, it is evident that b = a (-1) . If the

Fourier coefficients are non-zero, then the determinant of

the matrix of these coefficients must yanish. The coeffi-

cient matrix A is defined from the preceding relations as

follows:

= L [n272 + T(n2T2 + 2) 3 ] 6

nm 2 nm

m+l
nm(-l)

+ 4xXii nZ-m"p nm
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The eigenvectors T (alternately Xii) may be obtained

by solving the determinant equation. Since this particular

problem has been solved exactly by Kuo (1954), we here

solve the determinant equation to third order (N=3)

analytically and compare this approximation with Kuo's

results. The third order determinant equation may be

written, in this case, as an explicit relationship between

Xii7 and the modified inverse Taylor number T, together with

the wavelength L (= 27/k):

2 52 L 2(1+T 4-(1+4/L 2  ) (4TrT(4 /L2 39+ 4 (94/L 2) 3

ii -(1+r4LT(1+4/L2 3)+ (5/9)2 (9+T(9+4/L2 )3

S. .(24)

Obviously, the positive root Xii is the one of physical

interest in this case. The solutions of (24) are obtained

and minimized with respect to L using an electronic

calculator. The results will be presented graphically in

Chapter 5; in Table 2, a few values obtained from (24)

are compared with Kuo's (1954) results for selected values

of T. Kuo did not consider horizontal shear in the

equilibrium flow, or the possibility of overstable

oscillations; otherwise, his formulation of the problem
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TABLE 2

Comparison of Kuo's (1954) Results
with Those Obtained Using a Variational Method
to Third Order, for Case (ii) (Non-Hydrostatic)

Xii
(Variational)

.648

1.065

2.098

6.146

32.907

L
(Kuo)

.51

.80

1.29

2.07

2.94

L
(Variational)

.52

.79

1.29

2.07

2.95

is the same. The relationship between his non-dimensional

parameters, Qo and T , and mine are as follows:

Q = Xii/T

T = l/T

a= r/L

Considering the complexity of the form of the stream-

Xii
(Kuo)T

10-6
i0

.603

1.007

2.026

6.100

32.88010-2
I0
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function, the third order variational method yields

surprisingly good results. The errors in Xii range from

about 7.5% for t = 10 to less than 0.1% when r =10- 2 . The

largest errors occur for small T, since the spatial

variation of.the streamfunction becomes increasingly great

when T decreases (the variation becomes infinitely rapid

when T=0), and exceeds the capacity of the truncated series

(21) to adequately describe its structure. Note also that

the approximate value of Xii is always greater than the

exact result, as the degree to which Xii can be minimized

depends on the precision of the streamfunction structure

approximation.

(2) No-Slip Boundaries

The boundary conditions applicable when all velocity

components as well as the temperature perturbation vanish

at the boundaries are:

ai u, = 0 at boundaries

It proves convenient, in this instance, to express both

the latter two conditions in the form of constraints on

the streamfunction 4. In general, this is quite complicated;

but for the special case of steady overturning under
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hydrostatic conditions, the boundary conditions take a

simple form.

If horizontal diffusion is neglected, the hydrostatic

steady state forms of Equations (1)-(5) may be cross-

differentiated to obtain expressions for the second

derivatives in y of u and Bp/az. In dimensionless form,

these are:

8'2U a P 1+P (
=y (Xi- 2-P) - T + (1 +T )a y ayaz + ( Xi 3z

. . .(25)

a 2 -= (i -1-P) T(l+P) - + + T az5

. . .(26)

in which u and ap/az have been non-dimensionalized as

follows:

u* u (1 + P)
HT

(27)

ap*/az -

z fU-Hf Xi
.z
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where the asterisks denote the dimensional variables. Two

constants of integration involved in the derivation of

these expressions have been set equal to zero to exclude

the steady geostrophic solution

ay

i = 0

The requirement that u and 3p/3z vanish at the

boundaries implies, in Equations (25) and (26), that

4- 0 ~ 0 at boundaries (28)

The uneven nature of these conditions increases the

complexity of the problem, and in fact renders invalid the

variational relations (18) and (20), since in deriving

these expressions using integration by parts, either

D2 /Dz2 or 83 /;z3 must vanish at the boundaries. It is

therefore necessary to construct a new variational method

applicable to the no-slip boundary conditions. This method

will involve two variables: i and a function F defined by

F = .-
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We may then use the eight boundary conditions:

F, , =z ' 4 = 0 at z=0,l (29)

For simplicity, the following derivation will be carried

through with the Prandtl number set equal to unity. From

the form of Equation (9) it is evident that the final

characteristic value of the shear parameter will be

equivalent to the general parameter if the former is

multiplied by

(1 + P) 2
4P

The dimensionless, hydrostatic forms of Equations (1),

(2), and (4) may then be written:

S2u _ ip 2f 1 (30)-- y - +(30)zT=z Ri Dy

F a T z 4  (31)az az4

a2F 2f 1 a2  4f 1 2  (32)
Z2 -- Ri yaz Ri y (32)

in which u has been normalized by v/Hn and F by v/fn.

Equation (2) has been differentiated once with respect to
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z in order to obtain (31), and Equation (4) has likewise

been differentiated once in y to obtain (32). Equations

(30) and (31) may be combined to yield:

aF p+ 2f 1 a s*
az z r Ri 3y zs (33)

If the above is multiplied through by F and integrated

between the boundaries in z and across one wavelength in

y, an integration by parts together with the boundary

condition F= 0 at z=0,l yields

o F F -

000 F zz + +

flfL 3F (3d2f I 9 1+T p
S0 z z I Ri ay 3z s

The last equality follows from Equation (33), and is here

separated into two parts:

F 1 l O i L -1 L
a2F 2f 1 3I 3F IL a F

0 0 z 0 0 Ri y az J0 0 az + T z az

(i) (ii)

Using Equation (33) for aF/az, the first integral (i)

becomes:
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ci)lL 2f 1 4  2f 1 g + T
0 0 Ri 3y 3z T Ri By az

By an integration by parts, the second integral (ii) may be

expressed:

f I
0 0i

4g '. 2F
(IP + aT z2

aZ4 aZZ

Using (32) for a2F/az 2 , the preceding becomes:

a4 2f1 a 2  4 1 2
(I Ri ayaz Ri ay2 (ii)

The sum of (i) and (ii), after several integrations by parts,

yields:

1 lL 1 LS 2 F 4 1
010F T= o

2 2
f 1 2 a3P 2

[ (1 ) 1-) + T( )
Tj Ri ay yaz

The variational principle may be written 6T = 0 where

S 1i I L  2  I IL 2
fl ( ) + lL( 1) ( )f 4 0 z ~ Ri ay

0 0 0 '

I1
12

(34)

Admittedly, the motivation behind the preceding

derivation is not apparent; however, the proof that the

-1 L
0 0
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maximization of T with respect to the function * yields

the proper characteristic values is quite straightforward

and may be found in Appendix 3.

In order to extract the proper eigenvalue T and the

structure of the solutions y and F from the variational

relation (34), we again construct Fourier Series represen-

tations of y and F, each term of which satisfies the boundary

conditions. Since, by Equation (33), BF/3z may be expressed

explicitly in terms of p, however, we may alternatively

write (34) in terms of P alone and use the eight boundary

.conditions on 4:

p, , , = 0 at z=0,1 (35)
az az' azz

Since F E -32p/8y3z, the above conditions assure that

F also vanishes at the boundaries.

In order to construct a Fourier Series representation

of the streamfunction , it is necessary to find orthogonal

functions which satisfy, term by term, the boundary

conditions (35) and are periodic in y. It proves convenient

to shift the coordinate system so that the boundaries lie

at z = -1/2 and z = +1/2. Then, as derived in Appendix 4,

the functions S and Cm satisfy the conditions (35) in z,m m
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and are also orthogonal:

sinm z sinhP z

m - sin(pm/2) sinh(p m/2)

(36)

cosm z coshX z
m m

m - cos(a/2) cos ) COSh(Xm/2)
mn m

where the - 's and X 's are roots of the equations

U 1
coth - cot = 0

2 2

tanh - + tan - = 02 2

The functions (36) have been normalized so that

1/2 1/2

SS = CC =
-1/2 mn -1/2 mn mn

Also, all functions S are orthogonal to all functions C

f1/2-1/2 S (z)C (z)= 0

It is now possible to construct a complete Fourier Series

describing a streamfunction 4 that is arbitrary except that

it meets the boundary conditions (35) and is periodic in y:
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S= (a S siny + B C cosky) (37)
m=l

in which a and B are constant coefficients which will be
m m

treated as variational parameters.

The above is substituted into the integral relation

(34) (using (33) for ZF/3z), and T is maximized with

respect to each of the coefficients a and B m

Da 3amm m1 2

(38)

1  I2T = 0B MB
m m

m = 1,2,3,...,M

When the Fourier Series (37) is truncated to M terms, the

extremization of T with respect to each am and Bm results

in two sets of M linear equations for the Fourier coeffi-

cients. Performing the integrals and the operations (38),

these sets are:

M
a (1+Tpn ) Xi + I [am [S 'S '](l+Tn 4 ) (l+T m4)

m=l

+ BmX i[SC '](l+1 T(n + X4 )) ] = 0 (39a)
m I1i Sn~m 2 n m
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M
B (1+TX n

4 )1 2 X + IB [C 'C '] (1+TA ' ) (1+TX4 )
n f 1 +lm inn mk n ( mM=- 1

+ a [SC ']Ii (1 + T (X, + P )1 = 0
m mn 2 n m

(39b)

n = 1,2,3,...,M

The Prandtl number dependence has been re-inserted and Xi

is defined in the usual way:

Sf (1+P)2

T Xi T Ri P

The bracketed quantities denote the following:

S1/2 Saz as
-1/2 3z az

1 n '1n8pn2 2 [nCOt n- 9mCOt ]

m m
i cot- [cot- - 2]

m 2 i 2

[S 'S ']n m

n/m

n=m
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8A 2 2 [Xtan. X tan- ]
n m m 2 n 2 n/rn

nJm

[C C 1/2 C BC m n

n m J-1/2 z

n n
X tan- [X tan + 2] n=m
n 2 n 2

1/2 SC -8vn 2X 2
[SC'] E S m _ m

nJ -1/ 2 n z n4 4
n m

The coefficients of the a 's and B 's in Equations (39)n n

comprise a characteristic matrix for the value of Xi, with

T specified. The characteristic value problem may be

phrased in terms of the eigenvalues of this matrix as

follows:

First, define a new horizontal wavenumber 2':

2' E EX'Xi

Then, divide through each of the M equations in sets (39a)

and (39b) by £' 2 (1 + Tn ') and £'2(1 + TXn4) respectively.

The resulting sets are:
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B m__ 11(n + Xm )

a M a B 1 + (

-n + [S 'S '] (1+ TV ) + [SC '] ( 1 = 0
Xi m= n 1 + Tn

. . .(40a)

B M B a
--n+ [C 'C '](+T )+ [SC '] (
Xi M 1 n m m mn

1+ T(X + )
2n m =0

1 + TX 4
n

. . .(40b)

n = 1,2,3,...,M

An order of the above set of linear equations is now con-

structed so that the quantity 1/Xi is an eigenvalue of the

associated matrix of coefficients. The dimensions of the

array will be 2Mx 2M, as there are M equations for a,

a 2 , ... , a n and M for B, B2, ... , Bm.  The first M rows

of the array comprise the set of Equations (40a); the

second M rows contain Equations (40b).

Also, the first M columns contain the coefficients

of al-am, while the second M columns contain the B's:
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Allal + Al2a2 + ... Almam+Al(l+m) 1 + A(2+m) 2 + .. Al, (2M)BM = 0

A21a2 + ... =0

A (m+) ,lal + A(m+1 ) ,2a2 + ... + A (M+1) 2MBM = 0

A2M, lal +...
+A2m,2mBM = 0

By this construction, the quantity -1/Xi

of the matrix A, where A.. is defined as

(I) For i < M

(a) For j < M

[S. 'S.']
(b) Forj +T

(b) For j > M

A.
1]3

[SiC. ''
I -M

is an eigenvalue

follows:

1 + T ( 4  4)
2 + -M

k' 1 + Ti 4
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(II) For i > M

(a) For j < M

[S.C. ] i+ 1  4 4)
sC i- M  2T (Xi-M Pj

3 £ 1 + TiM

(b) For j > M

[Ci 'c. ]
A i-M 3-M [1 + T X jM ]

Aij j-M

The largest positive eigenvalue I/Xi is found from the

matrix thus defined using the numerical methods described

in Part I. The wavenurmber £' that minimizes Xi is also

obtained. In this instance, a manual calculation is only

practical when 1M=1, but nevertheless provides a valuable

check of the numerical scheme and computer program.

Again, it is found that the eigenvalue converges to three

or four significant figures as the number of terms in the

Fourier Series (37) is increased to five, except for very

small values of the parameter T (< 10- 6 ).* The results

presented here are obtained using the five-term approxima-

tion of (37). Eigenvectors of the matrix A are also found,

enabling one to compute the relative magnitudes of the

Fourier coefficients and so construct an approximate

* See Appendix 6
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streamfunction. The amplitude of these coefficients drops

off rapidly with increasing order, as was found for the

free-slip problem. In Table 3, examples of the Fourier

coefficients associated with a diffusion parameter T = 10- 4

are listed. (All values have been normalized by al.)

A complete description of the marginal state for

inertial instability in a hydrostatic fluid with no-slip

boundaries will be found in the following chapter.

TABLE 3

Fourier Coefficients of the Series (37),
Normalized by al, for No-Slip Boundaries-4

and T = 10

a B
n n n

1 1.0000 1.0912

2 0.0105 -0.2785

3 0.0029 -0.0123

4 0.0006 -0.0016

5 0.0002 -0.0003
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CHAPTER 5

RESULTS OF THE STABILITY ANALYSIS

The methods described in the preceding chapter have

been used to solve the characteristic value equations

derived within Chapter 3; the solutions are presented

herein. Although these results are approximate, they may

be made as accurate as one wishes, according to the degree

of computation deemed practical. In most of the solutions

discussed presently, the characteristic values of the

stability parameters are correct to at least three

significant figures. Any errors involved in the computa-

tion of the associated structure functions are completely

masked by the inaccuracies of their graphing, with some

exceptions as discussed below.

(a) Hydrostatic Disturbances

The critical values of the inertial stability

parameter Xi, as a function of T, are presented graphically

in Figures 4a, b, and c for both sets of boundary conditions.

(Each of the plots are presented as both linear and log-log

curves in order to expose the details of the linear as well

as exponential variation of the parameters.)

As one might expect, the critical value of the shear

parameter Xi increases monotonically with the diffusion



4 4 a

Xi

80

64- S '

48

32

16

8 16 24 32 40 48 56 Tx 10 4

Figure 4a: The critical value of the' inertial stability parameter Xi as a function of the
diffusive parameter T, for hydrostatic disturbances in a stably stratified fluid.
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Figure 4b: Same as figure 4a, but for free-slip boundary conditions only. Asymptotic solution

at T = 0 derived from inviscid theory; asymptotic curve as T + * deduced from

second-order variational method.
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Figure 4c: Same as figure 4b, but for no-slip boundary conditions. Asymptotic curve as T - o

deduced from linear dependence indicated in figure 4a.
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parameter T and, compatible with the asymptotic results of

Chapter 4, becomes a linear function of T when the latter
-3

is greater than about 2 x 10-3. A linear regression

through selected values associated with large values of

T gives an asymptotic dependence of approximately

Xi = 10920 T + 11.05 T+

for the free-slip case, and

Xi = 7800 T + 13.30 T+

when the horizontal velocity components are constrained to

vanish at the boundaries. These results have been obtained

using a fifth-order variational method. When the two-term

approximation to the Fourier Series used to represent the

streamfunction is employed instead, one may procure an

analytic approximation to the Xi-T curve as T- oo. For

free-slip boundaries, this is:

Xi + 10950T

as T -

L - 7.5
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This is quite close to the fifth-order asymptotic depen-

dence.

< -4
When the diffusion is small (T I' 10 ), the type of

boundary condition present has little effect on the

criterion of instability, but as viscous dissipation

increases., it is apparent that the instability sets in

sooner when the boundaries are no-slip. This discrepancy

occurs despite the larger shears generated near the no-slip

boundaries. The explanation of this phenomenon may be

found in a comparison of the structures of the tangential

perturbation velocity components in the free-slip and

no-slip cases, as will be discussed presently.

The non-dimensional horizontal wavelength L at which

the .flow first becomes unstable is presented as a function

of T in Figure 5. The dimension of the disturbance

increases rapidly with the diffusion when the latter is

small, but this dependency is much smaller when T exceeds

-4
about 10- 4 . When the boundaries are no-slip, the most

unstable wavelength rapidly reaches an asymptotic value of

about 3 for increasing diffusion, whereas the disturbance

wavelength increases more slowly and approaches a value of

7.5 if the boundaries are free-slip. The greater dissipation

at the no-slip boundaries apparently discourages large

wavelengths even when the diffusion is large.
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Figure 5a: Most unstable non-dimensional horizontal wavelength L associated with the critical

value of Xi , as a function of the diffusion parameter T.
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Figure 5b: Same as figure 5a, but for free-slip boundaries only. Solution at T m 0 derived
from inviscid theory; asymptotic curve as T + * deduced from second-order
variational method.



3

2

I

II

I I I I I
-6 -5 -4 -3 -2 !ogT

Figure 5c: Same as figure 5b, but for no-slip boundaries.
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Streamfunctions associated with the onset of unstable

motion are presented in Figures 6a-d for free-slip and

no-slip boundaries, each for two values of the parameter

T. These have been constructed using five terms of the

Fourier Series (21) for free-slip and (37) for no-slip

boundaries; the horizontal wavenumber in each instance

represents that of the disturbance which first becomes

unstable. The dashed line indicates the orientation of the

potential isotherms, and the Ekman depth 6 defined by

1/2 - 1/4
( ) =/2 H (( T)

f f

is depicted in the lower left portion of the diagrams.

The instability is clearly manifest as a series of

sloped roll vortices oriented more or less along the

potential isotherms. As one would expect, large horizontal

velocities occur near the free-slip boundaries, but the

circulations withdraw outside the boundary layer in the

no-slip case. The motions take the form of highly

elongated bands when dissipation is small, but become more

circular as the viscous forces become more important. As

may be surmised from the form of Equation (9), the

conditions determining the marginal state are dependent on

the Prandtl number, but the streamfunctions in the marginal
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Figure 6a: Streamfunctions at the onset of instability when the boundaries are free-slip and

T = 10 -4 . Dashed line indicates relative orientation of potential temperature

surfaces at Prandtl Number = 1, and nominal boundary layer depth 6 is indicated

in lower left.



Figure 6b: Same as figure 6a, but with T = 1.6 x 10~- .
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Figure 6c: Same as figure 6a but with no-slip boundary conditions. T = 10-4.
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Figure 6d: Same as figure 6a but with no-slip boundary conditions and T 
= 10- 3 .
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state are not.

The tangential (zonal) velocity component as well as

the perturbation pressure gradient may be obtained directly

from Equations (1) and (4) together with the known

streamfunction and the boundary conditions. As the Fourier

Series (21) and (37) are only approximations to the real

streamfunctions, however, mathematical difficulties arise

when one attempts to construct solutions for u and p in

this manner. These problems occur because the accuracy

of the truncated series used to describe the streamfunction

is not guaranteed for all values of its derivatives. In

fact, the series need only provide an accurate description

of the function itself and its first three derivatives

in z in order to correctly derive the characteristic values

of the stability parameters (see Chapter 4). In order to

insure rapid convergence of the solutions for u and p, it

proves necessary to construct elliptic diagnostic equations

for these variables from the basic Equations (1) - (4). When

the motions may be considered hydrostatic, and horizontal

diffusion is unimportant, these equations are particularly

simple, and may be written in scaled form:

1 3u 2i X i 32 p T 6 (
(1 +) = p z (41)
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yaz3  X ay2  PT 6 (42)

Here, u and p have been scaled by v/Ha and (v/n_2)(Xi/Uz)

respectively. Either the above set or (25) and (26) may

be solved for u and p.

Figures 7a-d illustrate the distributions of tangential

velocity corresponding to the streamfunctions presented in

the preceding figures. The structures are obtained using

the five-term Fourier Series representation of the stream-

functions in Equation (41) for free-slip boundaries, and

(25) for no-slip boundaries. The Prandtl number, here, is

unity.

The contrasting structures of the tangential velocity

components for the two sets of boundary conditions are

striking. In the free-slip case, the maximum velocities

are found at the boundaries at the point of intersection

of the "stagnation" streamline, whereas the no-slip

boundaries favor maximum velocities in the center of the

domain. The build-up of large vorticities at the free-slip

boundaries undoubtedly inhibits the vertical motions, as

the resulting mass adjustments tend to oppose the vertical

accelerations. This may explain the tendency of

instabilities of this kind to favor no-slip boundaries. The

same phenomenon occurs in the rotating Rayleigh convection
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Figure 7a: Normalized perturbation tangential velocity associated with the streamfunctions of

figure 6a. Positive values denote flow out of the page. Free-slip boundaries,

T = 10- 4 , P = 1.
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Figure 7b: Tangential velocity associated with streamfunctions of figure 6b. Free-slip

boundaries, T = 1.6 x 10- 3 , P 1.
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Figure 7c: Tangential velocity associated with the streamfunctions of figure 6c. No-slip

boundaries, T = 10-4 , P = 1.
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Figure 7d: Tangential velocity associated with the streamfunctions of figure 6 d.. No-slip

boundaries, T =10- 3 , P = 1.
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problem for certain values of the Taylor number (see

Chandrasekhar, 1961).

Under both types of boundary conditions, a strong

negative correlation of u and w is evident and the pattern

also suggests a similar association of u and v. When

no-slip boundaries are present, the generation of tangential

velocity perturbations is evidently accomplished, for the

most part, by vertical advection.

The structures of the temperature perturbations,

ap/az, are depicted in Figures 8a-d for free-slip and

no-slip boundaries, and for a Prandtl number of unity. In

either case, the temperature perturbations reflect the

distortion of the equilibrium state potential isotherm

field by the flow, especially when the latter is topo-

logically forced to cross potential isotherms. The

temperature perturbations are confined to the interior

of the domain due to the boundary condition 3p/3z = 0. The

eddy transport of potential temperature appears to be

countergradient, i.e., w'8' < 0, v'8' < 0, where e is the

potential temperature. The total flux of temperature,

however, involves a transport of the mean temperature field

by the eddies; such a transport is not accounted for here.

We may state, however, that if a second-order expansion of

the perturbation streamfunction does not contain a term
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Figure 8a: Normalized temperature perturbation (6p/Sz) associated with the streamfunctions of

figure 6a, with the Prandtl Number equal to 1. Pressure distribution may be inferred
from symmetry, with high pressure below and low pressure above negative (cold)
perturbations, etc. Free-slip boundaries, T = 10 - 4.
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Figure 8b: Temperature perturbation associated with the streamfunctions of figure 6b. Free-slip

boundaries, T = 1.6 x 10- 3, P = 1.
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independent of the horizontal dimension, then the total

horizontal transport, to second order, will involve only

the eddy flux of potential temperature. This conclusion

is reached as follows:

If each of the variables u, 4, p, and p are expanded

to second order in a small amplitude parameter e:

u = u o + u 1u + E 2 U 2 +

4.= o + 1 + 2 "'

etc., then the total horizontal flux of potential temper-

ature to second order in e is:

-i = 1 L i a2
v'lno' - z In6' L 0 0 + -In  ne0 )dydz

By an integration by parts together with the boundary

condition on y2, the second term in the integral becomes:

1 L  1 1 L n0 dydz- -21n] dy
L 0 2  0 L 0 0 2 9z

Since in this theory 1inO 0/3z is constant, and as 2 = 0,

the second term above vanishes. The boundary condition

w2 E 3 2/ay = 0 indicates that the first term will also
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vanish unless 2 is a function of z alone at the boundaries.

Stone (1972) has shown that 2 is, in the inviscid theory,

a function of the vertical coordinate only, so that the

possibility of a contribution by the advection of the mean

temperature field by the eddies cannot be discounted. The

same arguments apply, incidentally, to the second-order

horizontal flux of tangential (zonal) momentum. It may

be shown, however, that the second-order vertical fluxes

of these quantities are identical to the eddy fluxes

alone, for example:

1 1L ap 1  _2
w'ln' = l 0 ( - Inel +  Y n80)dydz

L 0 0 By 3y

the second term of which reduces to

1 L flL alne-- [2ln8l dz - - V dydz
0 2 00 L 0 2 dydz

Since.alne0/ay is constant and 2 - 0, the second term

above vanishes; the first term also vanishes due to the

imposed periodicity in y. The total second-order flux in

the vertical reduces to

w'lnO' = ~ Ine dydz
L 0 0 3Y 1
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Similarly, the vertical flux of tangential (zonal) momentum

is

w'ul flfL I', ul dydzL 00 y0 y

Inspection of the streamfunctions, tangential velocity

fields, and temperature distributions illustrated in the

preceding figures reveals that the vertical eddy fluxes

of potential temperature (3p/az) and tangential momentum

are downward; the former is destabilizing while the latter

is stabilizing.

The distribution of pressure, especially near the

boundaries, may be inferred from Figures 8a-d together with

the imposed symmetries. The perturbation pressure appears

to vanish at the intersection of the stagnation streamline

with the boundaries. High pressure is centered under the

core of the upward motion, and low pressure occurs under

the descending (warm) branch of the circulation.

It is of interest to compare the relative amplitudes

of u and v and also those of the temperature and velocity

perturbations for various Taylor numbers and boundary

conditions.

In general, it is found that the ratio u /vm is

somewhat larger than unity for all T less than about 10-2.
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(The subscript m denotes the maximum value of the

dimensional quantity within the domain.) For example, when

-4
T = 10 , u m = 27 for free-slip boundaries and 19 when

the boundaries are no-slip. As dissipation increases, the
-3

ratio becomes smaller: when T = 10 3, for instance,

um V m = 15.5 (free-slip) and 13.7 (no-slip). Similarly,

the relative amplitude of the pressure perturbation

(measured against the intensity of the streamfunction)

decreases with increasing dissipation. The magnitudes of

both tangential velocity and temperature perturbations are

greater when the boundaries are free-slip.

In si nary, the onset of hydrostatic inertial dis-

turbances in a bounded fluid is characterized by roll

vortices more or less parallel to the potential isotherms,

with a horizontal wavelength on the order of the ratio of

the fluid depth and the slope of the potential isotherms.

.The region of upward motion is characterized by low

temperature and negative perturbation tangential velocity;

the converse is true in the region of descent. The highest

suiface pressure occurs somewhat toward the colder air from

the position of the updraft near the surface.
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(b) Non-Hydrostatic Disturbances in a Fluid
with Neutral Stratification

The onset of unstable motions in a viscous fluid with

constant shear and neutral stratification is described by

Equation C10), when the instability begins as steady

overturning, and (14) if the disturbances appear as oscil-

lations. The general form of both these equations is:

(V2) 3 a 2 s - a2
Xii ayaz a2 (43)

The parameters T and Xii have different interpretations

depending on whether the disturbances begin as steady

overturning or oscillatory motion:

f v2H

Steady overturning:

Oscillations:

The reader is reminded

oscillations be possible at

IU
X _z (I+P)

2
- = T(1 + -)

1U (3+-)z P
11Xii = 2

that in order that standing

all, not only must Equation (43)



-133-

be satisfied, but the oscillation frequency as given by

(12a) or (12b) (as modified for the non-hydrostatic neutral

stratification case) must be real. Applying arguments

parallel to those used to exclude the possiblity of

standing oscillations in the hydrostatic case (see

Chapter 3), one may show that instability may only set in

as oscillations in the parameter range in which the

stationary solution decays with time. The domain of

Prandtl and Taylor numbers in which oscillatory instability

is possible is bounded by the locus of points in the T-P

plane for which the marginal states of each form are

identical. This domain is found by varying the Prandtl

and Taylor numbers and finding, from the relationship of

Xii and T given by Equation (43) and the boundary conditions,

which form of instability arises first.

Since the solutions of the neutral stratification

,problem have already been discussed by Kuo (1954), we

present this section in order to:

(a) Compare a "third-order" approximate

solution obtained using the methods

described in Chapter 4 with Kuo's

exact solutions;

(b) Find the parameter ranges in which over-

stability occurs.
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A discussion of the comparison between Kuo's results

and those obtained using a variational method to third-

order may be found in Chapter 4. The relationship between

Xii and T characterizing the marginal state is illustrated

in Figure 9, and the wavelength at which instability first

occurs is presented in Figure 10. Both Kuo's results and

those obtained using the approximate method are illustrated;

the two curves describing the most unstable wavelength are

indistinguishable.

The range of T and P in which overstability occurs

at the onset of instability is illustrated in Figure 11.

It is noted that overstability cannot occur if T is greater
-5

than 10- or P greater than 1. Overstable oscillations

are only likely for very small diffusion when the Prandtl

number is less than unity. If oscillatory instability

does occur, the period of oscillation is on the order of

1/f; a wave of 100 km length, for example, might be expected

to propagate at a few meters per second.

In Chapter 4, an explicit formula for the variation

of the critical value of Xii with T and L was derived from

the third-order variational method (Equation 24). We have

found that the results obtained by this technique compare

favorably with the exact results of Kuo (1954), and that,

the accuracy of the results is better for larger T. From
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Equation (24), we may derive an asymptotic relation for

large T (r4T >> 1):

Xii + 2747T

as T c

L + 3.41

Corresponding to the first relation, the asymptotic curve

InXii = 7.918 + 2.3026 log 1 0T

is also depicted in Figure 9.

The structures of the streamfunctions, tangential

velocity, and temperature perturbations associated with

inertial motions in a neutrally stratified shear flow are

similar to those occurring in connection with unstable

motions in a stratified, hydrostatic flow. Although the

potential temperature surfaces are vertically oriented in

the former instance, the disturbances slope upward toward

the cold air and transport momentum downward. The maximum

negative tangential velocity at the surface occurs

considerably north (toward the colder air) of the region of

upward motion near the surface, instead of coinciding with

the latter as occurs in the hydrostatic case. The reader
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is referred to Kuo's 1954 paper for a complete discussion

of the structures of the velocity and temperature pertur-

bations.
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CHAPTER 6

INERTIAL STABILITY AND MESOSCALE
CONVECTIVE CIRCULATIONS

The stability analyses of shear flow in rotating

diffusive fluids indicate, that circulations may develop in

lines parallel to the shear when the Richardson number is

sufficiently low. The important characteristics of inertial

motion deduced from the stability analyses are:

(a) The instability favors regions of low

Richardson number and anticyclonic shear

fl 1
(=1 large).
( Ri

(b) The circulations occur as roll vortices

sloped along potential temperature

surfaces, with wavelengths on the order

of the ratio of the depth of the

unstable region and the slope of the

potential isotherms. In the atmos-

phere, this quantity is on the order of

100 km; the instability may therefore be

regarded as a mesoscale phenomenon.

(c) The circulations exhibit strong

convergence in the boundary layer and

may thereby support cumulus convection

when the distributions of moisture and

temperature are favorable.
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(d) The mesoscale updraft is cold and has

less horizontal (zonal) momentum than

the mean environmental flow. The density

distributions favor high surface pressure

under the mesoscale updraft and low

pressure below the regions of descent.

(e) The disturbances, unless they are

growing rapidly, have a greater effect

on the component of flow parallel to

the shear than on the normal component.

(f) In the absence of asymmetries, the

inertial circulations show little

tendency to propagate - their motion

relative to the ground is determined

by. the component of flow normal to

the shear.

(g) Unequal diffusions of heat and momentum

appear to enhance inertial instability.

Many of these deduced characteristics of inertial circula-

tions are similar to those observed in connection with

mesoscale convective lines; one is therefore led to inquire

whether the conditions favorable to inertial circulations

are actually found in the vicinity of convective lines,

and if so, what processes operating within the atmosphere
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act to destabilize the flow. In this chapter, we

investigate atmospheric processes that act to destroy

inertial stability, and explore observational evidence

of the operation of such processes in connection with

various mesoscale line phenomena.

(a) Destruction of Inertial Stability

in the Atmosphere

In order to examine the types of processes within

the atmosphere that may cause inertial instability, it is

convenient to relate the hydrostatic linear inertial growth

rate a for Prandtl number 1

02 _ 1 n
f2 Ri f

to the potential vorticity of the flow. The latter may

be defined

q r (V3 X + kf) - Vln0

where 6 is the potential temperature. If the flow is zonal

and in geostrophic balance, then

1n _ N2  ine6 z
z g -y gaz g ay g
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where N is the Brunt-Vaisala frequency, g is the acceleration

of gravity, and Uz is the vertical shear of the zonal vel-

ocity. From these relations,

2. U 2N z
g Ig

from which one may obtain an expression relating the inertial

growth rate to the potential vorticity:

a2  1 _ _ (44)
f2 Ri f fN 2 q

Inertial stability is small when the potential vorticity is

small. If the effective Prandtl number is unity, the poten-

tial vorticity must be negative for instability; otherwise,

circulations may develop for small positive values of q.

Equation (44) is particularly significant in that it

allows one to relate changes in the inertial stability

to corresponding variations in the potential vorticity of

the flow, which can only be brought about by dissipative

and diabatic processes. Inertial instability may occur due

to:

(a) Diabatic heating that acts to increase

the thermal wind and/or reduce the static

stability.

(b) Dissipative processes that increase the
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vertical shear (or decrease the vertical

component of the vorticity).

(c) Adiabatic and non-dissipative processes

that decrease the static stability

(see Equation (44)).

Low values of potential vorticity are found beneath the

anticyclonic shearing side of jet streams, where the absolute

vorticity is small and the vertical shear large. Further

reduction of inertial stability by diabatic and dissipative

processes would be expected to occur near the surface,

especially when there is strong solar heating and the

surface wind is large and in the same direction as the

shear. Adiabatic and non-dissipative processes that act

to decrease the static stability include vertical motion

and differential temperature advection accomplished by

ageostrophic motion. The latter process might be expected

to be of some importance, for example, beneath the right-

front quadrant of an advancing isotach maximum associated

with a jet stream. In this region, the decelerating

parcels move to the right of the geostrophic wind and

advect colder temperatures at middle or upper levels in the

troposphere, thereby destabilizing the lower troposphere.

In general, the area near, to the right of, and ahead of
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the core of jet streams would appear to be a favored

region for the development of inertial instability,

especially when diabatic and dissipative processes also

cooperate to reduce the stability.

(b) Inertial Stability and Observations
of Intense Convection

Having ascertained, in Chapter 1, that convective lines

in mid-latitudes are generally associated with strong

vertical shear of the horizontal wind, we must now inquire

as to whether the flow observed in the environment of such

convective lines is specifically characterized by low

inertial stability. Measurements needed to compute the

inertial stability index, -q, may be obtained directly

from a set of standard rawinsonde observations, but calcu-

lations of the Richardson number are-rarely found in the

literature on organized convection. Nevertheless, certain

observations of flow patterns typically associated with

intense convection reveal aspects of the inertial stability

of the flow.

Ludlam (1963) notes that intense thunderstorms in

Europe are usually found in the right-front quadrant of

surface-to-500 mb wind shear isotach maxima. His illustra-

tion of several examples of the location of severe

convection with respect to wind shear isotachs is
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reproduced in Figure 12. Similarly, Endlich and Mancuso

(1968) find that the negative magnitude of the relative

vorticity of the wind shear vector between the low and

middle troposphere is a good indicator of severe

convection. Numerous studies of severe line squalls

mention the presence of strong anticyclonic shear near

squall lines. A line studied by Breiland (1958) coincided

with the "marked right-hand edge" of a belt of strong winds

at 700 mb. Similarly, the upper level flow associated

with an intense squall line examined by Eisen (1972) shows

-5 -1
strong anticyclonic shear vorticity of about -5 x 10 sec

(-60% of f) near the line (Figure 13). The component of

low level flow parallel to the line reaches a minimum at

the location of the line (Figure 14) suggesting that

u'w' < 0 in this region. Strong anticyclonic shear and

negative absolute vorticity near a squall line is reported

by McLean (1961) on the basis of aircraft measurements.

Paine and Kaplan (1976) find that severe convection is

common on the anticyclonic shearing side of a large scale

jet stream as it advances into a geopotential field that

is strongly diffluent (indicating ageostrophic motion to

the right of the geostrophic wind). They also find very

good correlation between the location of developing squall

lines and regions in which the local time rate of change of
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!Figure 12:
Synoptic patterns for the
occasions of five severe storms
over Europe (positions marked
by black circles). The con-
tinuous lines are 500 mb con-
tours at 40 m intervals; the
dashed lines are isotachs of
the observed wind shear between
a level near the ground and the
500 mb level. The area within
the 50 knot isotach is partly
stippled. (From Ludlam, 1963)
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Figure 13: Streamlines (solid) and isotachs (m sec-1) (dashed) at

the 200 mb level at 0200Z on 9 June, 1966. Radar echoes

are shaded. (From Eisen, 1972)
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Figure 14: Streamlines (solid) and isotachs (m sec- 1) (dashed) at

the 950 mb level at 0300Z on 9 June, 1966. Radar echoes

are shaded. (From Eisen, 1972)
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equivalent potential vorticity (defined in the same way as

potential vorticity but using the equivalent potential

temperature) is negative. Severe convection was found by

Porter, et.al. (1955) to prefer a region 200 to 300 miles

to the right of a mid-troposphere jet core, in flow which

is either straight or shows slight anticyclonic curvature.

Finally, Sasaki (1973) studied a squall line that occurred

in a region of strong moisture convergence, which preceded

the line development by several hours. This area of

moisture convergence was found in a region in which the

gradient of the bulk Richardson number (computed between

the surface and 700 mb) was strong and indicative of

anticyclonic shear aloft. (The squall line occurred along

an isopleth of Richardson number 2, with lower values to

the left of the shear.) Sasaki also concludes that strong

downward momentum transport is intimately associated with

the squall line.

While these observational studies seem to show that

severe convection occurs within large scale flow patterns

indicative of low inertial stability, a direct measure of

the inertial stability parameters is needed in order to

ascertain the degree of stability. As a preliminary

attempt at such an analysis, the author computed the

stability parameter 11 Ri along a vertical cross-section
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through one of the severe squall lines that occurred in

the central United States on 3-4 April 1974. This cross-

section represents a composite of four standard rawinsonde

measurements, the locations of which are illustrated,

together with the isotachs of the wind component normal to

the cross-section and potential temperature, in Figure 15.

The Richardson number, which involves only vertical

derivatives, may be computed at different levels from each

sounding individually; the horizontal shear vorticity must

be estimated from the composite wind field. This case

was selected partially because the horizontal synoptic

scale flow in the vicinity of the lines showed very little

curvature or directional variation with height. The

computed field of (n/f)Ri is also illustrated in Figure 15.

A vigorous, tornado-producing squall line is located

just west of Huntington, West Virginia, in a region of very

low inertial stability. A second, weaker line occurs

somewhat to the west in an area of marginal stability.

The region of low stability does not appear to penetrate

above 700 mb in this case.

The effects of moisture are not, of course, accounted

for in computing the stability parameter. If a part of the

mesoscale area is saturated, then the inertial stability

will be less than the indicated values in this region since
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the effective static stability is also less. Sanders and

Paine (1975) found that a mesoscale circulation associated

with a vigorous frontal thunderstorm line contained a

saturated region of ascent, suggesting that inertial

stability may be lowered by latent heating on the mesoscale.

The observations reviewed here strongly support the

premise that vigorous organized convection is related to

the inertial stability of the large scale flow, although

further observational evidence is clearly needed to sub-

stantiate this hypothesis.

(c) Effect of Cumulus Convection
on Inertial Circulations

It is not possible to incorporate cumulus heating into

the linear theory of inertial instability without compli-

cating the problem enormously; however, certain aspects

of the modification of inertially induced motion by latent

heat release may be inferred from the general theory of

cumulus convection.

Once an inertial circulation is established, the

development of cumuli will favor regions of low static

stability and moisture convergence, both of which occur in

connection with the upward branch of the mesoscale circu-

lation. As the inertial circulation is sloped upward and

to the left of the shear, the individual cumulus elements
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will tend to move, relative to the mesoscale pattern,

across the isotherms toward colder air. To have the

appearance of a quasi-steady mesoscale convective line, new

cells must form, intensify to maturity, then decay while

moving through the mesoscale pattern from right to left

with respect to the thermal wind. In a north-south oriented

line imbedded in a thermal wind directed toward the north,

for example, new cells form on the east flank of the line

reach maximum intensity near the center, and decay while

moving off the western flank. Such discrete behavior is

frequently observed on radar in connection with convective

lines (see, for example, Sanders and Emanuel, 1977; Houze,

1977; Zipser, 1977), and also characterizes some numerical

models of frontal thunderstorm lines (Gordon, 1978).

Once established, the cumuli affect the mesoscale

fields through latent heating and vertical transport of

heat, moisture, liquid water, and momentum. The net effect

of precipitating cumuli is certainly to heat the mesoscale

updraft, forcing the upward branch of the circulation to

flow across potential isotherms. The cumuli act most

efficiently when the fractional area covered by the updraft

is much smaller than that of the downdraft; the mesoscale

circulation is likely affected accordingly. The idealized

dry inertial circulations indicated by linear stability
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theory show that adiabatic warming and low surface pressures

occur in conjunction with the mesoscale downdraft, while

high surface pressures and adiabatic cooling are associated

with updrafts. The cumuli act to counter this adiabatic

cooling, except near the surface within the region of

evaporating cloud and precipitation. The evaporative

cooling and liquid water loading undoubtedly act to re-

inforce the mesoscale surface high pressure in the region of

active convection (Fujita, 1955). Evaporation of liquid

water within the mesoscale downdraft acts to mitigate the

otherwise adiabatic warming that occurs there; the pertur-

bation surface pressure response in view of this effect

is ambiguous. A "wake low" is sometimes, but not always,

observed behind pre-cold frontal squall lines.

A speculative depiction of an inertio-convective

circulation, that ties together the effects of the processes

enumerated above, is illustrated in Figure 16. The updraft

is concentrated and more erect than the downdraft, which

is nearly parallel to the potential temperature surfaces

except where evaporation occurs. Cumulus scale downdrafts

and a "gust front" are indicated. The pressure field,

illustrated near the bottom of the figure, is fashioned

after the results of the linear stability analysis (e.g.,

see Figures 8), with modifications according to the
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Figure 16; Schematic of mesoscale circulation associated with a squall line. Streamlines are

denoted by solid curves; dashed line indicates orientation of potential temperature

surfaces. Cloud outlines are scalloped and shading denotes precipitation. Relative

surface pressure profile depicted at bottom.

surface pressure
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hydrostatic effects of evaporative cooling and liquid

water loading.

The asymmetries induced by the convection may also

force the system to propagate. If, for example, the

cumuli develop most vigorously where the mesoscale vertical

motion near the top of the boundary layer is strongest,

then the mid-troposphere vertical motion within the cumuli

would be most intense in the atmosphere above this region,

which is somewhat removed from the mesoscale ascent

maximum in the middle troposphere. Perhaps, the mesoscale

circulation responds by adjusting the vertical velocity

field toward the cumulus scale maximum. Such an effect

would be manifest as a propagation to the right of the

shear. A far more complete treatment of cunulus-mesoscale

interaction is necessary in order to resolve the possibility

of such behavior.

One further aspect of the character of some severe

squall lines deserves comment here; that is, the tendency

to develop waves and eventually mesocyclones along the line.

Observations of tornado outbreaks within the National Severe

Storms Laboratory mesonetwork reveal that the development

of LEWPS (Line Echo Wave Patterns) often precedes the

generation of tornadic mesocyclones. As illustrated in
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Chapter 5, inertial instabilities are capable of inducing

large horizontal shears of tangential velocity in the

region of maximum vertical motion, through the twisting of

the large scale shear vorticity. We speculate that the

waves sometimes observed within squall lines are manifes-

tations of inflectional instability of the mesoscale

horizontal shear induced by the twisting effect. Cyclonic

vortices would be found, under these circumstances, to the

right of the region of maximum vertical motion. As this

is also the region in which individual cumulus cells

intensify, the cyclonic instabilities would tend to develop

in preference to anticyclonic vortices, which occur where

the cumulus cells decay.

(d) Other Forms of Banded Overturning Motion
in the Atmosphere

The occurrence of banded structures aligned with the

local vertical wind shear is common in the atmosphere.

Perhaps the most familiar examples of phenomena of this

nature are long cirrus streaks often observed in the

vicinity of jet streams. A study of such bands, conducted

by Schaefer and Hubert (1955) reveals that the streaks are

often more than 1000 km long and are generally found in

regions of strong anticyclonic shear south of and under the

core of upper level jet streams. McLean (1961) finds
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evidence that the magnitude of the anticyclonic vorticity

may exceed the Coriolis parameter by as much as 50% in

small regions to the south of a strong jet.

Cloud streets are another familiar form of banded

overturning motion in the atmosphere. Kuettner (1971)

notes that the cloud streets observed during the BOMEX

occur in a layer with strong vertical shear but small vari-

ation in wind direction with height. These roll vortices

had width-to-depth ratios of from 2 to 4 and were aligned

with the wind. Since cloud streets often occur in unstable

boundary layer flow and have been observed directly at the

equator (where f vanishes), they are most likely an example

of Rayleigh convection in shear, rather than an inertial

instability.

Numerous investigations of the neutrally stratified

Ekman layer have, however, revealed the existence of two

forms of motion: a slow moving type oriented about 15*

counterclockwise from the direction of the geostrophic wind

above the Ekman layer, and a rapidly moving instability which

is closely aligned with the geostrophic flow. Lilly (1966-)

shows that this second form, which he calls parallel

instability, occurs at lower Reynolds numbers than the

first, and depends directly on the presence of rotation;

whereas the low speed bands are essentially a form of

Rayleigh instability occuring in conjunction with an
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inflection point in the Ekman flow profile. Experiments

by Tatro and Mollo-Christensen (1967) confirm the

theoretical predictions of Lilly (1966), and also reveal

that the finite amplitude parallel instabilities excite

inertial waves in the neutrally stratified geostrophic

flow above the Ekman layer. This observation, together

with the apparent direct dependence of the parallel

instability on rotation, suggests that these motions are

form of inertial instability. In order to test this

hypothesis, we develop a linear stability analysis of

incompressible Ekman flow, applying the following crude

assumptions:

(a) The instabilities are two-dimensional

and aligned with the geostrophic flow

in the interior.

(b) The shear along the line is approximated

by a constant value representing the

mean shear in the layer in which the

instabilities occur.

(c) The component of flow normal to the

geostrophic wind is approximately

constant in the layer of instability.

(d) The motion is confined above and below

by rigid, free-slip boundaries.

a
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The last assumption is the most vulnerable, since the

tank experiments and the Ekman layer flow itself depend

on the presence of a lower, no-slip boundary. The analysis

performed in Chapter 4 and discussed in Chapter 5 indicates,

however, that there is little difference in the critical

values of the stability parameters for differing boundary

conditions when the effects of diffusion are small;

otherwise, the no-slip boundaries appear to -be more

conducive to the onset of instability. Assumption (c) is

supported by the very small mean shear of the normal

component of flow within the Ekman layer. The ill effects

of Assumption (b) are somewhat mitigated if we require that

the total kinetic energy available to the instabilities

from the approximated shear flow be equal to that from

the actual Ekman flow. The total kinetic energy of the

shear flow in a layer of depth H is proportional to

1 2 21 U dz U

If turbulence acts to completely mix the momentum, then the
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velocity of the final state will be the same everywhere

and equal to the initial mean momentum. The total energy

of this final state will then be proportional to

i J Udz =

The kinetic energy available to the disturbances is

then the difference between the kinetic energies of the

initial and final states:

2 -2AKE E U - U

The mean value of the parallel component of shear

that we will use in the stability analysis is simply

1 H u U(H)
H J0  z H

We choose the height H so that the available kinetic

energy computed assuming this constant shear profile is

identical to that calculated using the actual Ekman flow

component parallel to the line.

The stability problem is solved using the same

techniques employed previously; details may be found in

Appendix 5. The Reynolds number is defined in the
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conventional manner for such problems:

U 6
Re = 2

in which U is the geostrophic wind, v is the coefficient

of viscosity, and 6 is the Ekman layer depth:

1/2

where 0 is the rotation rate of the fluid.

The analysis carried through in Appendix 5 yields a

critical Reynolds number of 54.5 associated with instabili-

ties of horizontal wavelength 2.19H (= 8.076) moving with

the mean normal component of flow, through the depth H,

of 14% U . The critical Reynolds number deduced from a
g

complete eigenanalysis of the Ekman layer instability

problem performed by Lilly (1966) was 55; nearly identical

to the value obtained through experiment by Tatro and

Mollo-Christensen (1967). The latter observed the parallel

instabilities to drift to the left of the geostrophic flow

at 16% U
g

The very good agreement of these experimental and

theoretical results with those obtained from the simplified

theory presented here suggests that the parallel instability
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observed within Ekman layers is a form of inertial

instability, since this is the only form of instability

permitted by this treatment. (The constant shear prohibits

Rayleigh instability.) In the present case, the inertial

motion occurs as a consequence of an unstable distribution

of Coriolis, pressure, and viscous forces within the fluid.

As the inertial instability sets in before the inflectional

type (characterized by a critical Reynolds number of 125)

and is observed in tank experiments to reach finite ampli-

tude before the latter begins (Tatro and Mollo-Christensen,

1967), one might expect to observe them in geophysical

boundary layers. Numerous observations within the

planetary boundary layer reveal the existence of periodic

fluctuations of temperature, moisture, and velocity, but

more detailed measurements are needed before the origin

of such disturbances is understood.
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CONCLUSIONS

Persistent, organized convection depends not only on

the availability of buoyant energy, as reflected in the

vertical stratification of moisture and temperature, but

also on the presence of circulations much larger than those

associated with the cumulus cloud; circulations which

provide the moisture convergence necessary to the

maintenance of the convection. Observations of convection

in middle latitudes reveal that cumuli often occur in lines

parallel to the shear of the flow in which they are

imbedded, suggesting that the larger scale supportive

circulations are roughly two-dimensional. The stability

analysis performed here indicates that the origin of such

circulations, or else the facility with which they are

driven by the cumulus convection, depends on the inertial

stability of the large scale flow. In addition, the

analyses reveal that inertial circulations generally take

the form of elongated roll vortices sloped upward and to

the left of the shear, with dimensions typical of the

mesoscale in the atmosphere. Properties of these vortices,

such as the velocity, temperature, and pressure distribu-

tions, are similar to those found in connection with

squall lines, and an examination of the flow patterns

associated with observed intense convective lines suggests
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that the latter form in regions of low and decreasing

inertial stability. It is also demonstrated that other

forms of banded overturning motion in the atmosphere, such

as certain forms of boundary layer rolls, may be associated

with a down-gradient transport of momentum accomplished

through the action of Coriolis and pressure forces.

Although a relationship between inertial circulations

and cumulus bands in the atmosphere is strongly implied

by observations of convection in the atmosphere, together

with inferences concerning the characteristics of inertial

motion drawn from linear stability theory, a clarification

of the role of inertial stability in geophysical fluids

is needed. The effects of variable shear and static

stability on inertial motions, as well as the interaction

of the latter with cumulus convection and the large scale

flow, are the next important steps to be taken in this

direction. A complete investigation of the dynamics of

the mesoscale link between convective processes and those

operative on the synoptic scale will lead to an important

new understanding of organized convection in the atmosphere.
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APPENDIX 1

Derivation of the Perturbation Equation
for the Streamfunction

Equation (6) is derived from the five perturbation

equations for the three velocity components, pressure, and

density as follows:

Equations (1)-(4) may be re-written using a stream-

function constructed from Equation (5):

( vV2)u = - - U al
at z ay

a V2) 1 p + fu
St az po ay

aC( IV21 p
at ay p0 z p0

a KV 2 ) - z u + N 
t P g yz g ay

(1)

(2)

(3)

(4)

The primes denoting perturbation quantities have been

dropped, and by definition

az w 4
by

If the perturbation density is eliminated between (3) and

(4), the result is:



-169-

a KV2)1 a - KV2)( a vV2)3at p0 a z at ay

+ fU- + N 2 a
z az ay

The perturbation pressure may now be eliminated between the

above and Equation (2):

a - f a 2 N2  2
at( - KV )( vV2 2 2at at y2  z ayaz ay2

a ( KV2)au a 2 a K2)
at z- at at ay2

Finally, the perturbation tangential velocity u is eliminated

between the preceding and Equation (1), resulting in the

perturbation Equation (6) for the streamfunction:

a a 2 a2  a2
( - Kv2 )( vV2) (a + P)$

K V + 2
= ( V )(fU a2  +2 N 2

aat z yaz + y2

- KV 2 )(fU + fl2)
at z ayaz z2

If the time dependence is zero (i.e., a/at = 0), the above

may be integrated twice to yield
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Kv2 (V2 )3 = -(v+K)fU - vN2  2z ayaz ay

- Kfr z + z- (1-1)

where 4 is a function whose Laplacian vanishes. Through

the boundary conditions, this function may be shown to be

zero as follows: For free-slip boundary conditions,

4 = 3u aD = 0
32z a 3z at z=O,H

Equation (1) is differentiated once in z, Equation (2) is

differentiated three times in z, and the equation for

ap/3z is differentiated once in y to yield:

(1-3)

(1-4)

8 u - a2vi a 23( vV') - -n U_
at @Z az2 Z ayaZ

- 1 ; 3p + 3u( V2) z + f
at az ayaz 8z3

S KV2) = -fU i a 2 2 a2P N
p at yz z yaz YZay

- (- - KV 2 )( -) vV2)at at ay_
(1-5)

Also, if (2) is differentiated once in z, it is evident

that 8a4/az' = 0 on the free-slip boundaries. Then, the

(1-2)
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preceding three equations become, on the boundaries,

a6  p 3 u
-v = + f 23

as6 ayaz3 a'

V3u U 3y
a Z =z a 24vazz = z ayaz

K yz = fUz  y~zKyaz z ayaz

Combining the above, we obtain

2 36 I_
-V K = fUZ (V+K)Ya3za z 3y~z

(on boundaries)

(on boundaries)

Examination of Equation (1-1) shows that the function

must also vanish at the boundaries. Since V2  = 0, the only

function which satisfies the boundary conditions (and

is not exponential in y) is = 0.* This argument is

unaffected by setting a equal to zero or letting V2 = 3a2/z2 .

When the boundaries are no-slip,

-4 u = = 0
az 3z (on boundaries)

I am indebted to David Andrews of the MIT Department of
Meteorology for deriving the proof that = 0.
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If Equation (1) is differentiated once in z, the equation

for ap/az is differentiated once in y, and the operator

(8/at - vV2)a/az is applied to (2), we obtain:

2 au - a2 p - 2
(t V z ayaz

St 8zz DyI

a _ _ a
( KV2) ap = ( - KV 2) (
at ayaz at at ay2

+ fU + N2 2p
z ayaz ayl

f(- -V2)- = -( vV ) + (  - VV2)at z at ayaz at az2

On the no-slip boundaries, the above become

( vV2) -n
at az TI 22

-K = ( K- V2)( - V2) (on boundaries)
yyaza at at ay2

f( Vz2)- = + ( •V ) 2at az yaz3 at az2

Eliminating u and p from the above, we arrive at:

S- V2) a2  ( - KV )( - vV2) 9a2
at Dz2 K at at ay
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az2 (on boundaries)

If a/at = 0, the above becomes (with a=l):

Sv2a(2) 3 2
VK(V) 3 ) = _fK W (on boundaries)

Comparison with Equation (1-1) shows that again, = 0 on

the boundaries, so that itself must vanish in the entire

domain.
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APPENDIX 2

Hydrostatic Oscillatory Instability
when the Prandtl Number is Unity

When the slope of the potential isotherms is small

-- 2
(fUz/N2 << 1), then horizontal diffusion and the momentum

z

of the vertical motions may be neglected, and Equation (6)

is instead:

a a2 232 -2f- 2
- v-) = -2fU __ Nat - ) z z 3yaz ay 2

- f 2n (2-1)
az2

Since (2-1) is linear with constant coefficients, the time

dependence may be separated as follows:

S= e at(y,z)

in which both a and T may be complex. If this form of the

streamfunction is substituted into Equation (2-1) and the

entire equation is then multiplied through by the complex

conjugate of T and integrated between the boundaries in

the vertical and across one wavelength in the horizontal,

the result is:
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02 0 z 2v 0 0

- H rL a2T
= -2fU f I * a, 2 tyz 0 0 yaz

fHfL 24

0 0

where T*

a* 2
DZ4

N2 IHL T*

0 0

is the complex conjugate of '. If one applies

the free-slip boundary conditions

a2 a_~4
az2 az at z=O,H

the preceding equation may be transformed, through integra-

tion by parts, to:

-HL 
2 2

0 0

- UI H0L  atr ar
- 0 2f az ay

2 0
2aYI

S1 2y

2 J IfL a3T1 2

0 0 3

aTi Ti
az ay

2

3 z

00

a2T
ay2

H L 2_ 2 f f iay
-C I I Sz' 

+ fHfL,0 f
0 o
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in which Yr and T. are the real and imaginary parts of Y
r 1

(i.e., T = Tr + iVi) and the vertical bars denote absolute

values of the functions. All the integrals of the above

equation are real, as are all the coefficients except a.

If a is expanded into real and imaginary parts;

o = a + ia.r 1

and the imaginary parts of the preceding equation are

equated, the result is:

Car f ~= v 12 I (2-2)r0 0 0 03 2

Both the integrands in this expression are real and

positive. It is therefore evident that if the growth rate

ar is either zero or positive, then the only solution of

the above is

a. = 0
1

We conclude that oscillations are not possible under

hydrostatic conditions when the Prandtl Number is 1 unless

the disturbances are decaying.

In fact, the preceding conclusion applies as well to
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the non-hydrostatic case when P=l. If the slope of the

potential isotherms is not small, Equation (2-2) becomes

instead:

HfL 2 2 IHY L f 2T

ajar JJ (M + 1 )1 > =-va
0 y 1 0 

2 2 ~ 2 2 T 2
+ 21 ayaz + I T-I

Since the integrands are, again, both real and positive,

the same arguments apply as in the previous discussion. It

is always true that when P=l,

If ar > 0, then a. = 0.r -- 1
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APPENDIX 3

Proof of the Variational Theorem
for No-Slip Boundaries

If the parameter T, as expressed by Equation (33),

1 l L aF 2 + l L

4 Xi 0 0 az 0 0

2
(Xi - 1) ( )ay Ii

T

L 3  2 "2

00  yaz

is maximized with respect to F and P, each of which satisfy

the boundary conditions (28) and the relations (31) and

(32), then it may be shown that F and i satisfy the

original perturbation equations. The condition that T be

a maximum is

1
T = 1 (SI1 - TSI 2 ) = 0 (3-1)

2

From Equation (33),

61 2X L 3- F O + 2(X - 1) lfLD 
6

1 2 X 0 0 z az i 0 0 ay ay

2Xi 0 0 + 2( i 0 0 y



By Equation (31),

a2 F j - 4 Xi s2
az -2Xi 3yaz -4

so that

F( +
aya z

Using integration by parts

92F
LO z

2 a ) + 2(i-1) f JlLa 6 _
ao ay ay

and the boundary conditions,

2 +22 ay + 2(Xi -1) 6 1

and also,

I-L _3 L a6

6I2 = 2 ay3z 2 Z y2 ay 4 3'
0 yz20 0 y2z

Therefore, by Equation (3-1),

f F F61 - T61 2  z + 2 + 2(Xi- 1)
1 0 y i y

- 2T yz 6 = 0

For an arbitrary variation 6(3 /;y), the above can only be

6110 0

0611

-179-
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true if

F +2 F-- + 2 + 2(Xi- 1)-- -5i ay i ay 2T = 0

By Equations (32) and (30),

aF ar alb
a- =t+ 2 z + T

aF _ 2u 5++ Tay ayaz ayaz4

The above are substituted into Equation (3-2) with the

result that

a9 at asp q a2u_ + 4X -+ T 2 + 2 0az iy 8zT ay ayaz

If this expression is differentiated once with respect

to z and use is made of Equation (30),

-2 az + 2X aythen we arrive at he expression

then we arrive at the expression

6 + 4X + 4X +2  0Tz6 i 3yaz i ay az2

(3-2)
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This is exactly the original perturbation Equation (9) with

P=1. It is therefore true that any function *, together

with a corresponding function F, that satisfies the

boundary conditions and maximizes T in (33) is a solution

of the governing set of equations.
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APPENDIX 4

Orthogonal Functions Satisfying No-Slip
Boundary Conditions*

In order to solve the variational expression (34), it

is necessary to construct a Fourier Series of orthogonal

functions that satisfy, term by term, the boundary

conditions

= = -z = - = 0 at

It may be shown that functions

dG =

and the boundary conditions

dG
dz

z = -1/2, 1/2

G satisfying the equation

(4-1)

at z = -1/2, 1/2 (4-2)

are orthogonal, and incidentally satisfy the conditions

This section follows a discussion of Chandrasekhar
(1961, Appendix V).
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d4G d5G
dz 4 = = 0 at z = -1/2, 1/2 (4-3)

If a. is a characteristic value associated with a function

G. satisfying (4-1) and (4-2), then

d4 G.

Now suppose the above is multiplied through by a function

Gj (belonging to a characteristic value aj), and integrated

between the boundaries:

J dG. i1 d 4 G14

G G

Using the boundary conditions (4-2) and integration by

parts, the preceding may be rewritten:

S d2G. d2G. G. G

Since, in general, a. will not be equal to a.j, it is

evident that

G.G. = 6.j

The functions G. are therefore orthogonal.1
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Equation (4-1) is readily solved. Applying the

boundary conditions (4-2), one may find sets of even and

odd solutions C and S :m m

cosX z coshX z
m m

m  cosX/2 coshXm/2

(4-4)
sinm z sinhm z

m m
m  sinpm/2 - sinhp /2

where the Xm's and Im's are roots of the equations

tanh X/2 + tan X/2 = 0

and

coth p/2 - cot y/2 = 0

Tabulated values of X and p may be found in Chandra-

sekhar (1961), page 636.

As the functions C and S satisfy (4-1), it is evident

that if either vanishes at the boundaries, then d C/dz4 and

d S/dz4 also vanish. Similarly, if (4-1) is differentiated

once, then the condition

dG dG =0 at boundaries
dz
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implies that

dSG
dz5 at boundaries

Therefore, the functions S and C constitute orthogonal

sets that satisfy the boundary conditions (4-2) and (4-3).
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APPENDIX 5

Inertial Stability of Ekman Layer Flow

The perturbation equations for two-dimensional distur-

bances aligned with the x axis in incompressible Ekman

layer flow consist of three momentum equations and the

continuity equation:

(- + V -
2 )u = f - U W

at ay Z

( + V a - V 2 )v = -fu - - Vw
at ay ay z

(- + V -- VV)w = -
at ay az

av awv + -= 0
ay az

where u, v, and w are the perturbation cartesian velocity

components, and p is the perturbation pressure normalized

by the fluid density. The quantities U and V are the

cartesian components of the unperturbed Ekman flow:

-z
S= U (1 - coszeZ)

g

-z
V= U sinze

g
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Here, the vertical coordinate z has been non-dimensionalized

by the Ekman depth

1/26 (-2v)

A streamfunction may be defined from the continuity

equation:

v - w

The three momentum equations may be combined into a sixth-

order partial differential equation for the streamfunction:

a - 2

3t y a2z

f - (U a) (5-1)
3z z ay

+ V - vV2) (V
at ay az zay

According to the assumptions outlined in Chapter 6-d,

we take both V and Uz to be constants equal to the mean of

each quantity over the non-dimensional depth H:

- 1H U -H
-V U sinze-Zdz = -U [1- e (sinH+ cosH)] (5-2)
H 0 g 2H
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-H

1 H a U(H) U (1- cosHe 
- H  U

U = dz - - --- a (5-3)
z H z H 6H 6H

The last approximation in (5-3) above is made assuming that

-H
e << 1. This assumption is supported by Lilly's (1966)

complete eigenanalysis, which indicates that the parallel

disturbances extend well above the nominal boundary layer

depth.

We choose a coordinate system that moves in the y

direction at the constant velocity V, so that in this

frame, Equation (5-1) reduces to:

(~ VV2) 2 V2 = _f22 - fUat aZ2  ayaz

If we normalize the time variable t by the Coriolis

parameter, and both spatial coordinates by a quantity

H(2v/f) 1/2, in which H is a non-dimensional vertical depth,

then the preceding becomes:

(.L 1 2 2V2 21 2 U D2
at 2H2 az2  f ayaz

Substituting expression (5-3) for U_ and 2v/62 for f, thez

above may be written:

a 1 2 Re (5-4)
( 2Ht V2) 2 ~ = z 2 2H 8yaz (54)
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where the Reynolds number is defined:

U 6
Re - -

Equation (5-4) may be solved as a characteristic value

problem for the critical value of Re, provided that the

time dependence and boundary conditions are defined. For

simplicity, we use rigid, free-slip boundary conditions at

the non-dimensional vertical coordinates 0 and 1. These

are:

S= 0 at z=0, (5-5)

The marginal state is defined as 3/3t = 0, unless the

instabilities begin as oscillations. This possibility

may be excluded entirely following arguments exactly

parallel to those expounded in Appendix 2. (Equation (2-1)

has the same form as (5-4), except that the term multiplied

by N2 is missing in the latter instance.)

For the marginal state, then, (5-4) becomes:

1 2 3 a2y_ Re 32i (5-6)
4H4 (V2) 32 2H ayaz

In order to solve the above for the characteristic
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value of the critical Reynolds number, it is necessary to

estimate the height H at which to place the upper boundary.

As discussed in Chapter 6-d, we take this height to be

the level below which the kinetic energy available to the

disturbances from the constant mean shear is identical to

that available from the actual shear.

The available kinetic energy is (see Chapter 6):

2 -2
AKE U - U

For. the approximate shear used in the stability

analysis,

Ua
U = 6z - z

z H

Then,

S HU 2
U 2 - 2 1 U 2

= lJ0 H-- z2dz= Ug2
H O H2 3 g

and

---z dz = 1 U
H 0 H 4 Ug

For the approximated flow, then,
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2 -2 1 2
AKE U U - U

1 12 g
(5-7)

In the actual Ekman flow, the component of flow in the x

direction is:

u = U [l - cosze-Z ]

The mean-square flow is then:

=- U 2
UO

2-z
- cosze ] dz

2- 5 1 -2H

g 8H 4

++-(cos2H - sin2H)))
2

and the square-mean flow is:

U= 'Ug [ - cosze ]dz
J0

2 -H
= U ) - (- 2~e (sinH-cosH)

LeH 2H H

-2H
+ e (1 - sin2H)
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The available kinetic energy of the Ekman flow is then;

2 -2 2 F3 1 -H
AKE 2  U - U =Ug H - 2H e (sinH -cosH)

-2H
- 4H2 (1 - sin2H)

1 -2H 1- -H e (i+ 2 (cos2H- sin2H)j (5-8)

The level below which the approximate value of the avail-

able kinetic energy is equal to the real value is defined

by equating (5-7) with (5-8). If we assume that the

value of H is greater than about 3 (e - H << 1), we may

neglect the transcendental terms of the resulting equation.

(This assumption will be justified a posteri.) The

equation for H becomes approximately:

2 2
-H -3H + 2 =

or

H = [9 ±+ VJ]

We choose the larger of the above roots to be consistent

with the assumption e-H << 1, and also because this larger
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value is in good agreement with Faller's (1965) observation

that the vertical velocity of boundary layer disturbances

vanishes at roughly 46. (Also see the numerical results

of Lilly, 1966.) Therefore, we take

H = 3.69

We use this value of H in Equation (5-6) together with

the boundary conditions (5-5) and obtain the critical

value of the Reynolds number.

Equation (5-6) has exactly the form of Equation (10)

for inertial instability in neutrally stratified shear flow.

The third-order variational solution of the latter is given

by Equation (24), which will also yield solutions to (5-6)

if we take

1
T = 44H'

Re
Xii = 2H

Since T is 0(10-3), the third-order variational method will

be accurate to within about 0.8% (see Table 2, Chapter 4).

The resulting critical Reynolds number is:
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Re = 54.5

This corresponds to a wavelength of 2.19H (= 8.076

dimensionally). The mean normal component of the flow in

the Ekman layer between the lower boundary and H = 3.696

is:

V = .14 U

Since the instability does not contain an oscillatory

component, this value represents the phase speed of the

disturbances in this simplified treatment.
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APPENDIX 6

Convergence of the Variational Results
and Comparison with Those of Walton (1975)

It is of interest to compare the results obtained

using the variational method with the asymptotic solutions

of Walton (1975), which are valid when T1/ 6 << i. In order

to extend the region of validity of the variational

solution to encompass sufficiently small values of T, so

that an overlap is obtained with Walton's results, it is

necessary to carry more terms of the Fourier series in order

that the rapidly varying structure functions associated

with the low viscosity flow are adequately described. As

T becomes very small, the presence of the boundaries has

a decreasing effect on the inertial circulations, and the

difference between the results obtained using free-slip

boundaries and those using no-slip boundaries becomes

minimal.

The convergence of the variational method for small

values of T is tested by comparing solutions obtained

using successively higher numbers of terms in the Fourier

series. We compare eigenvalues associated with Fourier

series of 4, 6, 8, and 10 terms respectively. The ratio

th
of the Nh order approximation of Xi to the approximation

of two orders lower is illustrated in Figures A6-1 and

A6-2 for free-slip and no-slip boundaries respectively.
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(Note the different scales along the ordinates.)

Reasonably good convergence is indicated for values

-8
of T as small as 10 for both sets of solutions; it is

felt that the 10th order approximation to Xi is correct

to three significant figures in the range of T illustrated.

While the quality of the free-slip solution improves

monotonically for increasing T, it appears that the no-slip

solution has a maximum rate of convergence for a definite

value of T, which decreases as the order of the approxima-

tion increases. This phenomenon is interpreted as an

indication that the structural complexity of the no-slip

solution increases when the flow becomes highly viscous,

thus necessitating a longer Fourier series. Both sets of

solutions favor higher wavenumbers as the viscosity of the

flow becomes very small.

Having acquired some confidence in the rate of

convergence of the solutions when T is very small, we are

now in a position to compare the variational solutions

with the asymptotic results of Walton. In the range of T

for which the latter are valid, the'type of boundary

condition has little influence on the solutions and, in

fact, Walton's method only requires the boundaries to be

rigid and does not distinguish between free-slip and no-slip

boundaries.
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Figures A6-3 and A6-4 illustrate both Walton's

results and those obtained using the variational method

to 10th order. (The no-slip boundary condition was used

in the latter since the rate of convergence is slightly

better in this range of T. The free-slip solutions are

very nearly identical.) Walton's results should deteriorate

as T increases, while the variational solutions improve.

Since the two results converge as T decreases, one may

infer that the 10t h order variational result is indeed

valid down to at least T = 10 .
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Figure A 6-1: Ratio of the Nth order approximation of Xi with the ap-

proximation of two orders lower for various values of N. Boundaries

are free-slip.
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Figure A 6-2: Same as figure A 6-1 but for no-slip boundaries.
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Comparison of the asymptotic solution for the inertial stability param-

obtained by Walton with the corresponding 1 0th order variational solution.
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Figure A 6-4: Non-dimensional wavelength L' at which instability first begins,

associated with the characteristic values of Xi illustrated in figure A 6-3.
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