21 research outputs found

    Correction to: HIF prolyl hydroxylase inhibition protects skeletal muscle from eccentric contraction induced injury

    Get PDF
    Following publication of the original article [1], the authors flagged that there is a discrepancy with the Availability of data and materials statement on page 12 of the article

    HIF prolyl hydroxylase inhibition protects skeletal muscle from eccentric contraction-induced injury

    Get PDF
    BACKGROUND: In muscular dystrophy and old age, skeletal muscle repair is compromised leading to fibrosis and fatty tissue accumulation. Therefore, therapies that protect skeletal muscle or enhance repair would be valuable medical treatments. Hypoxia-inducible factors (HIFs) regulate gene transcription under conditions of low oxygen, and HIF target genes EPO and VEGF have been associated with muscle protection and repair. We tested the importance of HIF activation following skeletal muscle injury, in both a murine model and human volunteers, using prolyl hydroxylase inhibitors that stabilize and activate HIF. METHODS: Using a mouse eccentric limb injury model, we characterized the protective effects of prolyl hydroxylase inhibitor, GSK1120360A. We then extended these studies to examine the impact of EPO modulation and infiltrating immune cell populations on muscle protection. Finally, we extended this study with an experimental medicine approach using eccentric arm exercise in untrained volunteers to measure the muscle-protective effects of a clinical prolyl hydroxylase inhibitor, daprodustat. RESULTS: GSK1120360A dramatically prevented functional deficits and histological damage, while accelerating recovery after eccentric limb injury in mice. Surprisingly, this effect was independent of EPO, but required myeloid HIF1α-mediated iNOS activity. Treatment of healthy human volunteers with high-dose daprodustat reduced accumulation of circulating damage markers following eccentric arm exercise, although we did not observe any diminution of functional deficits with compound treatment. CONCLUSION: The results of these experiments highlight a novel skeletal muscle protective effect of prolyl hydroxylase inhibition via HIF-mediated expression of iNOS in macrophages. Partial recapitulation of these findings in healthy volunteers suggests elements of consistent pharmacology compared to responses in mice although there are clear differences between these two systems

    Recovery of altered neuromuscular junction morphology and muscle function in mdx mice after injury.

    Get PDF
    Duchenne muscular dystrophy (DMD) is a devastating neuromuscular disease in which weakness, increased susceptibility to muscle injury, and inadequate repair underlie the pathology. While most attention has focused within the muscle fiber, we recently demonstrated significant alterations in the neuromuscular junction (NMJ) morphology and resulting neuromuscular transmission failure (NTF) 24 h after injury in mdx mice (murine model for DMD). Here we determine the contribution of NMJ morphology and NTF to the recovery of muscle contractile function post-injury. NMJ morphology and NTF rates were assessed day 0 (immediately after injury) and days 1, 7, 14 and 21 after quadriceps injury. Eccentric injury of the quadriceps resulted in a significant loss of maximal torque in both WT (39 ± 6 %) and mdx (76 ± 8 %) with a full recovery in WT by day 7 and in mdx by day 21. Post-injury alterations in NMJ morphology and NTF were found only in mdx, were limited to days 0 and 1, and were independent of changes in MuSK or AChR expression. Such early changes at the NMJ after injury are consistent with mechanical disruption rather than newly forming NMJs. Furthermore, we show that the dense microtubule network that underlies the NMJ is significantly reduced and disorganized in mdx compared to WT. These structural changes at the NMJ may play a role in the increased NMJ disruption and the exaggerated loss of nerve-evoked muscle force seen after injury to dystrophic muscles

    Synemin Isoforms Differentially Organize Cell Junctions and Desmin Filaments in Neonatal Cardiomyocytes

    No full text
    Intermediate filaments (IFs) in cardiomyocytes consist primarily of desmin, surround myofibrils at Z disks, and transmit forces from the contracting myofilaments to the cell surface through costameres at the sarcolemma and desmosomes at intercalated disks. Synemin is a type IV IF protein that forms filaments with desmin and also binds α-actinin and vinculin. Here we examine the roles and expression of the α and β forms of synemin in developing rat cardiomyocytes. Quantitative PCR showed low levels of expression for both synemin mRNAs, which peaked at postnatal day 7. Synemin was concentrated at sites of cell–cell adhesion and at Z disks in neonatal cardiomyocytes. Overexpression of the individual isoforms showed that α-synemin preferentially localized to cell-cell junctions, whereas β-synemin was primarily at the level of Zdisks. An siRNA targeted to both synemin isoforms reduced protein expression in cardiomyocytes by 70% and resulted in a failure of desmin to align with Z disks and disrupted cell–cell junctions, with no effect on sarcomeric organization. Solubility assays showed that β-synemin was soluble and interacted with sarcomeric α-actinin by coimmunoprecipitation, while α-synemin and desmin were insoluble. We conclude that β-synemin mediates the association of desmin IFs with Z disks, whereas α-synemin stabilizes junctional complexes between cardiomyocytes.—Lund, L. M., Kerr, J. P., Lupinetti, J., Zhang, Y., Russell, M. A., Bloch, R. J., Bond, M. Synemin isoforms differentially organize cell junctions and desmin filaments in neonatal cardiomyocytes.</p
    corecore