89 research outputs found

    The Markov–Krein Correspondence in Several Dimensions

    Full text link

    On a conjecture of Widom

    Get PDF
    We prove a conjecture of H.Widom stated in [W] (math/0108008) about the reality of eigenvalues of certain infinite matrices arising in asymptotic analysis of large Toeplitz determinants. As a byproduct we obtain a new proof of A.Okounkov's formula for the (determinantal) correlation functions of the Schur measures on partitions.Comment: 9 page

    Bethe ansatz at q=0 and periodic box-ball systems

    Full text link
    A class of periodic soliton cellular automata is introduced associated with crystals of non-exceptional quantum affine algebras. Based on the Bethe ansatz at q=0, we propose explicit formulas for the dynamical period and the size of certain orbits under the time evolution in A^{(1)}_n case.Comment: 12 pages, Introduction expanded, Summary added and minor modifications mad

    Creation of ballot sequences in a periodic cellular automaton

    Full text link
    Motivated by an attempt to develop a method for solving initial value problems in a class of one dimensional periodic cellular automata (CA) associated with crystal bases and soliton equations, we consider a generalization of a simple proposition in elementary mathematics. The original proposition says that any sequence of letters 1 and 2, having no less 1's than 2's, can be changed into a ballot sequence via cyclic shifts only. We generalize it to treat sequences of cells of common capacity s > 1, each of them containing consecutive 2's (left) and 1's (right), and show that these sequences can be changed into a ballot sequence via two manipulations, cyclic and "quasi-cyclic" shifts. The latter is a new CA rule and we find that various kink-like structures are traveling along the system like particles under the time evolution of this rule.Comment: 31 pages. Section 1 changed and section 5 adde

    A Study of Anyon Statistics by Breit Hamiltonian Formalism

    Get PDF
    We study the anyon statistics of a 2+12 + 1 dimensional Maxwell-Chern-Simons (MCS) gauge theory by using a systemmetic metheod, the Breit Hamiltonian formalism.Comment: 25 pages, LATE

    Crystal Interpretation of Kerov-Kirillov-Reshetikhin Bijection II. Proof for sl_n Case

    Full text link
    In proving the Fermionic formulae, combinatorial bijection called the Kerov--Kirillov--Reshetikhin (KKR) bijection plays the central role. It is a bijection between the set of highest paths and the set of rigged configurations. In this paper, we give a proof of crystal theoretic reformulation of the KKR bijection. It is the main claim of Part I (math.QA/0601630) written by A. Kuniba, M. Okado, T. Takagi, Y. Yamada, and the author. The proof is given by introducing a structure of affine combinatorial RR matrices on rigged configurations.Comment: 45 pages, version for publication. Introduction revised, more explanations added to the main tex

    Form factor approach to dynamical correlation functions in critical models

    Full text link
    We develop a form factor approach to the study of dynamical correlation functions of quantum integrable models in the critical regime. As an example, we consider the quantum non-linear Schr\"odinger model. We derive long-distance/long-time asymptotic behavior of various two-point functions of this model. We also compute edge exponents and amplitudes characterizing the power-law behavior of dynamical response functions on the particle/hole excitation thresholds. These last results confirm predictions based on the non-linear Luttinger liquid method. Our results rely on a first principles derivation, based on the microscopic analysis of the model, without invoking, at any stage, some correspondence with a continuous field theory. Furthermore, our approach only makes use of certain general properties of the model, so that it should be applicable, with possibly minor modifications, to a wide class of (not necessarily integrable) gapless one dimensional Hamiltonians.Comment: 33 page

    Infinite-dimensional pp-adic groups, semigroups of double cosets, and inner functions on Bruhat--Tits builldings

    Get PDF
    We construct pp-adic analogs of operator colligations and their characteristic functions. Consider a pp-adic group G=GL(α+k,Qp)G=GL(\alpha+k\infty, Q_p), its subgroup L=O(k,Zp)L=O(k\infty,Z_p), and the subgroup K=O(,Zp)K=O(\infty,Z_p) embedded to LL diagonally. We show that double cosets Γ=KG/K\Gamma= K\setminus G/K admit a structure of a semigroup, Γ\Gamma acts naturally in KK-fixed vectors of unitary representations of GG. For each double coset we assign a 'characteristic function', which sends a certain Bruhat--Tits building to another building (buildings are finite-dimensional); image of the distinguished boundary is contained in the distinguished boundary. The latter building admits a structure of (Nazarov) semigroup, the product in Γ\Gamma corresponds to a point-wise product of characteristic functions.Comment: new version of the paper, 47pp, 3 figure

    Two-dimensional Yang-Mills theory, Painleve equations and the six-vertex model

    Full text link
    We show that the chiral partition function of two-dimensional Yang-Mills theory on the sphere can be mapped to the partition function of the homogeneous six-vertex model with domain wall boundary conditions in the ferroelectric phase. A discrete matrix model description in both cases is given by the Meixner ensemble, leading to a representation in terms of a stochastic growth model. We show that the partition function is a particular case of the z-measure on the set of Young diagrams, yielding a unitary matrix model for chiral Yang-Mills theory on the sphere and the identification of the partition function as a tau-function of the Painleve V equation. We describe the role played by generalized non-chiral Yang-Mills theory on the sphere in relating the Meixner matrix model to the Toda chain hierarchy encompassing the integrability of the six-vertex model. We also argue that the thermodynamic behaviour of the six-vertex model in the disordered and antiferroelectric phases are captured by particular q-deformations of two-dimensional Yang-Mills theory on the sphere.Comment: 27 pages, 1 figure; v2: Presentation of Section 2 improved; Final version to be published in Journal of Physics
    corecore