810 research outputs found

    Reconciling Present Neutrino Puzzles: Sterile Neutrinos as Mirror Neutrinos

    Full text link
    We suggest that recent neutrino puzzles that are the solar and atmospheric neutrino deficits as well as the possible neutrino oscillations reported by the LSND experiment and the possibility of massive neutrinos providing the hot component of the cosmological dark matter, can all be naturally explained by assuming existence of a mirror world described by an ``electroweak'' gauge symmetry [SU(2)×U(1)]â€Č[SU(2)\times U(1)]', with the breaking scale larger by about factor of 30 than the scale of the standard SU(2)×U(1)SU(2)\times U(1) model. An interesting aspect of this model is that the sterile neutrinos arise from the hidden mirror sector of the theory and thus their lightness is more natural than in the usual neutrino mass scenarios. The needed pattern of the neutrino mass matrix in this model is obtained by assuming a conserved ZKM-type global lepton number Lˉ=Le+LΌ−Lτ\bar L=L_e+L_\mu-L_\tau, which is violated by Planck scale effects. One implication of our proposal is that bulk of the dark matter in the universe is a warm dark matter consisting of few KeV mass particles rather than the 100 GeV range particles of the currently popular cold dark matter scenarios.Comment: 10 pages, Latex, no figure

    Neutrino Decay as an Explanation of Atmospheric Neutrino Observations

    Get PDF
    We show that the observed zenith angle dependence of the atmospheric neutrinos can be accounted for by neutrino decay. Furthermore, it is possible to account for all neutrino anomalies with just three flavors.Comment: 4 pages, 1 figur

    The Age Of Globular Clusters In Light Of Hipparcos: Resolving the Age Problem?

    Get PDF
    We review five independent techniques which are used to set the distance scale to globular clusters, including subdwarf main sequence fitting utilizing the recent Hipparcos parallax catalogue. These data together all indicate that globular clusters are farther away than previously believed, implying a reduction in age estimates. This new distance scale estimate is combined with a detailed numerical Monte Carlo study designed to assess the uncertainty associated with the theoretical age-turnoff luminosity relationship in order to estimate both the absolute age and uncertainty in age of the oldest globular clusters. Our best estimate for the mean age of the oldest globular clusters is now 11.5±1.311.5\pm 1.3 Gyr, with a one-sided, 95% confidence level lower limit of 9.5 Gyr. This represents a systematic shift of over 2 σ\sigma compared to our earlier estimate, due completely to the new distance scale---which we emphasize is not just due to the Hipparcos data. This now provides a lower limit on the age of the universe which is consistent with either an open universe, or a flat, matter dominated universe (the latter requiring H_0 \le 67 \kmsmpc). Our new study also explicitly quantifies how remaining uncertainties in the distance scale and stellar evolution models translate into uncertainties in the derived globular cluster ages. Simple formulae are provided which can be used to update our age estimate as improved determinations for various quantities become available.Comment: 41 pages, including 10 eps figs, uses aaspp4.sty and flushrt.sty, submitted to Ap.J., revised to incorporate FULL Hipparcos catalogue dat

    “No Wash” Albumin-Dextran Dilution for Double-Unit Cord Blood Transplantation is Safe with High Rates of Sustained Donor Engraftment

    Get PDF
    AbstractWashing cord blood (CB) grafts involves product manipulation and may result in cell loss. We investigated double-unit CB transplantation (CBT) using red blood cell (RBC)–depleted units diluted with albumin-dextran in patients with hematologic malignancies. One-hundred thirty-six patients (median age, 43 years; range, 4 to 71; median weight, 69 kilograms (kg); range, 24 to 111) underwent transplantation with a 4/6 to 6/6 HLA-matched graft. Patients ≀ 20 kg were excluded, as they only received washed units. Units were diluted a median of 8 fold to a median volume of 200 mL/unit. The median infused total nucleated cell doses were 2.7 (larger unit) and 2.0 (smaller unit) x 107/kg, respectively, and the median post-thaw recovery was 86%. Units were infused consecutively (median, 45 minutes/unit). While only 17 patients (13%) had no infusion reactions, reactions in the remaining 119 patients were almost exclusively mild-moderate (by CTCAE v4 criteria 12 grade 1, 43 grade 2, 63 grade 3) with only 1 patient (< 1%) having a severe (grade 4) reaction. Moreover, most were easily treated. Grade 2 to 3 hypertension was the most common in 101 (74%) patients. The cumulative incidence of sustained donor-derived neutrophil engraftment was high: 95% in myeloablative and 94% in nonmyeloablative CBT recipients. With appropriate supportive care, double-unit CBT with RBC-depleted grafts infused after albumin-dextran dilution is safe with high rates of engraftment in patients > 20 kg

    Neutrino propagation in a random magnetic field

    Get PDF
    The active-sterile neutrino conversion probability is calculated for neutrino propagating in a medium in the presence of random magnetic field fluctuations. Necessary condition for the probability to be positive definite is obtained. Using this necessary condition we put constraint on the neutrino magnetic moment from active-sterile electron neutrino conversion in the early universe hot plasma and in supernova.Comment: 11 page

    Light Sterile Neutrino from extra dimensions and Four-Neutrino Solutions to Neutrino Anomalies

    Get PDF
    We propose a four-neutrino model which can reconcile the existing data coming from underground experiments in terms of neutrino oscillations, together with the hint from the LSND experiment and a possible neutrino contribution to the hot dark matter of the Universe. It applies the idea that extra compact dimensions, probed only by gravity and possibly gauge-singlet fields, can lower the fundamental scales such as the Planck, string or unification scales. Our fourth light neutrino Îœs\nu_s (ss for sterile) is identified with the zero mode of the Kaluza-Klein states. To first approximation \nu_sterile combines with the nu_mu in order to form a Dirac neutrino with mass in the eV range leaving the other two neutrinos massless. The smallness of this mass scale (suitable for LSND and Hot Dark Matter) arises without appealing neither to a see-saw mechanism nor to a radiative mechanism, but from the volume factor associated with the canonical normalization of the wave-function of the bulk field in the compactified dimensions. % On the other hand the splitting between \nm and \nu_sterile (atmospheric scale) as well as the mass of the two other neutrinos (solar mass scale) arise from the violation of the fermion number on distant branes. We also discuss alternative scenarios involving flavour-changing interactions. In one of them \ne can be in the electron-volt range and therefore be probed in beta decay studies.Comment: 12 pages, latex, no figures, title changed, final version to be published in Phys Rev

    Big Bang Nucleosynthesis Constraints on Primordial Magnetic Fields

    Get PDF
    We reanalyze the effect of magnetic fields in BBN, incorporating several features which were omitted in previous analyses. We find that the effects of coherent magnetic fields on the weak interaction rates and the electron thermodynamic functions (\rhoe, \Pe, and \drhoedt ) are unimportant in comparison to the contribution of the magnetic field energy density in BBN. In consequence the effect of including magnetic fields in BBN is well approximated numerically by treating the additional energy density as effective neutrino number. A conservative upper bound on the primordial magnetic field, parameterized as ζ=2eBrms/(TÎœ2)\zeta=2eB_{rms}/(T_\nu^2), is ζ≀2\zeta \le 2 (ρB<0.27ρΜ\rho_B < 0.27 \rho_\nu). This bound can be stronger than the conventional bound coming from the Faraday rotation measures of distant quasars if the cosmological magnetic field is generated by a causal mechanism.Comment: Latex, 20 pages, 3 uuencoded figures appende
    • 

    corecore