832 research outputs found

    Design concepts and performance of NASA X-band (7162 MHz/8415 MHz) transponder for deep-space spacecraft applications

    Get PDF
    The design concepts and measured performance characteristics are summarized of an X band (7162 MHz/8415 MHz) breadboard deep space transponder (DSP) for future spacecraft applications, with the first use scheduled for the Comet Rendezvous Asteroid Flyby (CRAF) and Cassini missions in 1995 and 1996, respectively. The DST consists of a double conversion, superheterodyne, automatic phase tracking receiver, and an X band (8415 MHz) exciter to drive redundant downlink power amplifiers. The receiver acquires and coherently phase tracks the modulated or unmodulated X band (7162 MHz) uplink carrier signal. The exciter phase modulates the X band (8415 MHz) downlink signal with composite telemetry and ranging signals. The receiver measured tracking threshold, automatic gain control, static phase error, and phase jitter characteristics of the breadboard DST are in good agreement with the expected performance. The measured results show a receiver tracking threshold of -158 dBm and a dynamic signal range of 88 dB

    Enabling QM-accurate simulation of dislocation motion in γ−Ni and α−Fe using a hybrid multiscale approach

    Get PDF
    We present an extension of the ‘learn on the fly’ method to the study of the motion of dislocations in metallic systems, developed with the aim of producing information-efficient force models that can be systematically validated against reference QM calculations. Nye tensor analysis is used to dynamically track the quantum region centered at the core of a dislocation, thus enabling quantum mechanics/molecular mechanics simulations. The technique is used to study the motion of screw dislocations in Ni-Al systems, relevant to plastic deformation in Ni-based alloys, at a variety of temperature/strain conditions. These simulations reveal only a moderate spacing ( ∼ 5 Å ) between Shockley partial dislocations, at variance with the predictions of traditional molecular dynamics (MD) simulation using interatomic potentials, which yields a much larger spacing in the high stress regime. The discrepancy can be rationalized in terms of the elastic properties of an hcp crystal, which influence the behavior of the stacking fault region between Shockley partial dislocations. The transferability of this technique to more challenging systems is addressed, focusing on the expected accuracy of such calculations. The bcc α − Fe phase is a prime example, as its magnetic properties at the open surfaces make it particularly challenging for embedding-based QM/MM techniques. Our tests reveal that high accuracy can still be obtained at the core of a dislocation, albeit at a significant computational cost for fully converged results. However, we find this cost can be reduced by using a machine learning approach to progressively reduce the rate of expensive QM calculations required during the dynamical simulations, as the size of the QM database increases

    Imeall : a computational framework for the calculation of the atomistic properties of grain boundaries

    Get PDF
    We describe the Imeall package for the calculation and indexing of atomistic properties of grain boundaries in materials. The package provides a structured database for the storage of atomistic structures and their associated properties, equipped with a programmable application interface to interatomic potential calculators. The database adopts a general indexing system that allows storing arbitrary grain boundary structures for any crystalline material. The usefulness of the Imeall package is demonstrated by computing, storing, and analysing relaxed grain boundary structures for a dense range of low index orientation axis symmetric tilt and twist boundaries in -iron for various interatomic potentials. The package’s capabilities are further demonstrated by carrying out automated structure generation, dislocation analysis, interstitial site detection, and impurity segregation energies across the grain boundary range. All computed atomistic properties are exposed via a web framework, providing open access to the grain boundary repository and the analytic tools suite

    On the α−\alpha-decay of deformed actinide nuclei

    Full text link
    α−\alpha-decay through a deformed potential barrier produces significant mixing of angular momenta when mapped from the nuclear interior to the outside. Using experimental branching ratios and either semi-classical or coupled-channels transmission matrices, we have found that there is a set of internal amplitudes which are essentially constant for all even--even actinide nuclei. These same amplitudes also give good results for the known anisotropic α−\alpha-particle emission of the favored decays of odd nuclei in the same mass region. PACS numbers: 23.60.+e, 24.10.Eq, 27.90.+bComment: 5 pages, latex (revtex style), 2 embedded postscript figures uuencoded gz-compressed .tar file To appear in Physical Review Letter

    Practical management of multiple sclerosis

    Get PDF
    Patients with multiple sclerosis often require high levels of medical input from their GP and treating neurologist. GPs are often their first point of contact regarding symptoms or complications of their disease or its treatment

    Process Control of Activated Sludge Treatment

    Get PDF
    General feed forward controllers, conforming to standard control modes, have been derived for an activated sludge process. The analysis indicated that the appropriate controllers are proportional control with measurement of substrate flow rate, and derivative control with measurement of inlet substrate concentration, and manipulation of the rate of return sludge by both controllers. The performance of these controllers was tested by computer simulation of five dynamic aerator models with and without sludge storage, and with two settling basin models. In all cases significant reduction of the maximum exit substrate concentration was achieved. Additional improvement resulted from the use of sludge storage. As the aerator model became more linear the control results also improved. The first dynamic results were obtained using a perfect steady state settler model, the remainder assumed that the settler dynamics could be represented by a variable time delay. The addition of the settler dynamics caused the control to degrade somewhat. Finally the generality of the two controllers was proved mathematically for the five biological kinetic models for substrate utilization and bacterial growth

    Performance of a Ka-band transponder breadboard for deep-space applications

    Get PDF
    This article summarizes the design concepts applied in the development of and advanced Ka-band (34.4 GHz/32 GHz) transponder breadboard for the next generation of space communications systems applications. The selected architecture upgrades the X-band (7.2 GHz/8.4 GHz) deep-space transponder (DST) to provide Da-band up/Ka- and X-band down capability. The Ka-band transponder breadboard incorporates several state-of-the-art components, including sampling mixers, a Ka-band dielectric resonator oscillator, and microwave monolithic integrated circuits (MMICs). The MMICs that were tested in the breadboard include upconverters, downconverters, automatic gain control circuits, mixers, phase modulators, and amplifiers. The measured receiver dynamic range, tracking range, acquisition rate, static phase error, and phase jitter characteristics of the Ka-band breadboard interfaced to the advanced engineering model X-band DST are in good agreement with the expected performance. The results show a receiver tracking threshold of -149 dBm with a dynamic range of 80 dB and a downlink phase jitter of 7 deg rms. The analytical results of phase noise and Allan standard deviation are in good agreement with the experimental results

    Zero retinal vein pulsation amplitude extrapolated model in non-invasive intracranial pressure estimation

    Get PDF
    Intracranial pressure (ICP) includes the brain, optic nerve, and spinal cord pressures; it influences blood flow to those structures. Pathological elevation in ICP results in structural damage through various mechanisms, which adversely affects outcomes in traumatic brain injury and stroke. Currently, invasive procedures which tap directly into the cerebrospinal fluid are required to measure this pressure. Recent fluidic engineering modelling analogous to the ocular vascular flow suggests that retinal venous pulse amplitudes are predictably influenced by downstream pressures, suggesting that ICP could be estimated by analysing this pulse signal. We used this modelling theory and our photoplethysmographic (PPG) retinal venous pulse amplitude measurement system to measure amplitudes in 30 subjects undergoing invasive ICP measurements by lumbar puncture (LP) or external ventricular drain (EVD). We estimated ICP from these amplitudes using this modelling and found it to be accurate with a mean absolute error of 3.0 mmHg and a slope of 1.00 (r = 0.91). Ninety-four percent of differences between the PPG and invasive method were between − 5.5 and + 4.0 mmHg, which compares favourably to comparisons between LP and EVD. This type of modelling may be useful for understanding retinal vessel pulsatile fluid dynamics and may provide a method for non-invasive ICP measurement

    Gravitational Geons on the Brane

    Full text link
    In this paper, we examine the possibility of static, spherically symmetric gravitational geons on a 3 dimensional brane embedded in a 4+1 dimensional space-time. We choose a specific g_tt for the brane-world space-time metric. We then calculate g_rr analytically in the weak field limit and numerically for stronger fields. We show that the induced field equations on the brane do admit gravitational geon solutions.Comment: 14 pages with 9 figures. To appear in General Relativity and Gravitatio
    • …
    corecore