3 research outputs found

    Local light-activation of the Src oncoprotein in an epithelial monolayer promotes collective extrusion

    Get PDF
    International audienceTransformed isolated cells are usually extruded from normal epithelia and subsequently eliminated. However, multicellular tumors outcompete healthy cells, highlighting the importance of collective effects. Here, we investigate this situation in vitro by controlling in space and time the activity of the Src oncoprotein within a normal Madin-Darby Canine Kidney (MDCK) epithelial cell monolayer. Using an optogenetics approach with cells expressing a synthetic light-sensitive version of Src (optoSrc), we reversibly trigger the oncogenic activity by exposing monolayers to well-defined light patterns. We show that small populations of activated optoSrc cells embedded in the non-transformed monolayer collectively extrude as a tridimensional aggregate and remain alive, while the surrounding normal cells migrate towards the exposed area. This phenomenon requires an interface between normal and transformed cells and is partially reversible. Traction forces show that Src-activated cells either actively extrude or are pushed out by the surrounding cells in a non-autonomous way

    Heterochromatic repeat clustering imposes a physical barrier on homologous recombination to prevent chromosomal translocations

    No full text
    Mouse pericentromeric DNA is composed of tandem major satellite repeats, which are heterochromatinized and cluster together to form chromocenters. These clusters are refractory to DNA repair through homologous recombination (HR). The mechanisms by which pericentromeric heterochromatin imposes a barrier on HR and the implications of repeat clustering are unknown. Here, we compare the spatial recruitment of HR factors upon double-stranded DNA breaks (DSBs) induced in human and mouse pericentromeric heterochromatin, which differ in their capacity to form clusters. We show that while DSBs increase the accessibility of human pericentromeric heterochromatin by disrupting HP1α dimerization, mouse pericentromeric heterochromatin repeat clustering imposes a physical barrier that requires many layers of de-compaction to be accessed. Our results support a model in which the 3D organization of heterochromatin dictates the spatial activation of DNA repair pathways and is key to preventing the activation of HR within clustered repeats and the onset of chromosomal translocations.</p

    Control of SRC Molecular Dynamics Encodes Distinct Cytoskeletal Responses by Specifying Signaling Pathway Usage

    No full text
    Upon activation by different transmembrane receptors, the same signaling protein can induce distinct cellular responses. A way to decipher the mechanisms of such pleiotropic signaling activity is to directly manipulate the decision-making activity that supports the selection between distinct cellular responses. We developed an optogenetic probe (optoSRC) to control SRC signaling, an example of a pleiotropic signaling node, and we demonstrated its ability to generate different acto-adhesive structures (lamellipodia or invadosomes) upon distinct spatio-temporal control of SRC kinase activity. The occurrence of each acto-adhesive structure was simply dictated by the dynamics of optoSRC nanoclusters in adhesive sites, which were dependent on the SH3 and Unique domains of the protein. The different decision-making events regulated by optoSRC dynamics induced distinct downstream signaling pathways, which we characterized using time-resolved proteomic and network analyses. Collectively, by manipulating the molecular mobility of SRC kinase activity, these experiments reveal the pleiotropy-encoding mechanism of SRC signaling
    corecore