45 research outputs found

    Mexican migrant workers: Are they the image of a global village?

    Get PDF
    Bibliography: 98-105

    Prevalence of the E321G MYH1 variant for immune-mediated myositis and nonexertional rhabdomyolysis in performance subgroups of American Quarter Horses.

    Get PDF
    BackgroundImmune-mediated myositis (IMM) in American Quarter Horses (QHs) causes acute muscle atrophy and lymphocytic infiltration of myofibers. Recently, an E321G mutation in a highly conserved region of the myosin heavy chain 1 (MYH1) gene was associated with susceptibility to IMM and nonexertional rhabdomyolysis.ObjectivesTo estimate prevalence of the E321G MYH1 variant in the QH breed and performance subgroups.AnimalsThree-hundred seven elite performance QHs and 146 random registered QH controls.MethodsProspective genetic survey. Elite QHs from barrel racing, cutting, halter, racing, reining, Western Pleasure, and working cow disciplines and randomly selected registered QHs were genotyped for the E321G MYH1 variant and allele frequencies were calculated.ResultsThe E321G MYH1 variant allele frequency was 0.034 ± 0.011 in the general QH population (6.8% of individuals in the breed) and the highest among the reining (0.135 ± 0.040; 24.3% of reiners), working cow (0.085 ± 0.031), and halter (0.080 ± 0.027) performance subgroups. The E321G MYH1 variant was present in cutting (0.044 ± 0.022) and Western Pleasure (0.021 ± 0.015) QHs at lower frequency and was not observed in barrel racing or racing QHs.Conclusions and clinical importanceKnowing that reining and working cow QHs have the highest prevalence of the E321G MYH1 variant and that the variant is more prevalent than the alleles for hereditary equine regional dermal asthenia and hyperkalemic periodic paralysis in the general QH population will guide the use of genetic testing for diagnostic and breeding purposes

    Type 2 polysaccharide storage myopathy in Quarter Horses is a novel glycogen storage disease causing exertional rhabdomyolysis

    Get PDF
    Background: Both type 1 (PSSM1) and type 2 polysaccharide storage myopathy (PSSM2) are characterised by aggregates of abnormal polysaccharide in skeletal muscle. Whereas the genetic basis for PSSM1 is known (R309H GYS1), the cause of PSSM2 in Quarter Horses (PSSM2-QH) is unknown and glycogen concentrations not defined. Objectives: To characterise the histopathological and biochemical features of PSSM2-QH and determine if an associated monogenic variant exists in genes known to cause glycogenosis. Study design: Retrospective case control. Methods: Sixty-four PSSM2-QH, 30 PSSM1-QH and 185 control-QH were identified from a biopsy repository and clinical data, histopathology scores (0–3), glycogen concentrations and selected glycolytic enzyme activities compared. Coding sequences of 12 genes associated with muscle glycogenoses were identified from whole genome sequences and compared between seven PSSM2-QH and five control-QH. Results: Exertional rhabdomyolysis in PSSM2-QH occurred predominantly in barrel racing and working cow/roping performance types and improved with regular exercise and a low starch/fat-supplemented diet. Histopathological scores, including the amount of amylase-resistant polysaccharide (PSSM2-QH 1.4 ± 0.6, PSSM1-QH 2.1 ± 0.3, control-QH 0 ± 0, p \u3c 0.001), and glycogen concentrations (PSSM2-QH 129 ± 62, PSSM1-QH 175 ± 9, control-QH 80 ± 27 mmol/kg, p \u3c 0.0001) were intermediate in PSSM2-QH with significant differences among groups. In PSSM2-QH, abnormal polysaccharide had a less filamentous ultrastructure than PSSM1-QH and phosphorylase and phosphofructokinase activities were normal. Seventeen of 30 PSSM2-QH with available pedigrees descended from one of three stallions within four generations. Of the 29 predicted high or moderate impact genetic variants identified in candidate genes, none were present in only PSSM2-QH and absent in control-QH

    Tendon cell ciliary length as a biomarker of in situ cytoskeletal tensional homeostasis

    Get PDF
    To determine if tendon cell ciliary length could be used as a biomarker of cytoskeletal tensional homeostasis, 20 mm long adult rat tail tendons were placed in double artery clamps set 18 mm apart to create a 10% laxity. The tendons were allowed to contract over a 7 day period under culture conditions. At 0, 1, 5, and 7 days the tendon cell cilia were stained and ciliary length measured using confocal imaging. There was a significant (p<0.001) increase in ciliary length at 1 day. At day 5 (when the tendon became visibly taut) there was a significant (p<0.001) decrease in ciliary length compared to day 1. By day 7 the tendon remained taut and ciliary length returned to day zero values (p=0.883). These results suggest that cilia length reflects the local mechanobiological environment of tendon cells and could be used as a potential in situ biomarker of altered cytoskeletal tensional homeostasi

    How people get into mental health services: Stories of choice, coercion and "muddling through" from "first-timers"

    No full text
    Previous work examining how individuals enter mental health treatment comes either from the health services utilization tradition, which implicitly assumes that clients make decisions to seek care, or from the socio-legal perspective, which examines how clients are forced into care. This paper draws from the Network-Episode Model to systematically consider the different social processes through which people come to enter psychiatric treatment by exploring the "stories" told by individuals making their first major contact with the mental health system. We combine the use of qualitative and quantitative methods to examine data from the Indianapolis Network Mental Health Study, a longitudinal study of individuals in treatment at the largest public and voluntary facilities in the city. We analyze detailed self-reports of how they came to use mental health services, classifying these stories as "choice," "coercion," or "muddling through." Using multinomial logit analyses, we examine how factors such as gender, race and diagnosis shape the types of stories that individuals tell. The preliminary results indicate that fewer than half of the stories (45.9%) match the notion of choice underlying the dominant utilization theories. Almost a quarter of respondents (22.9%) report coercion and nearly one-third (31.2%) tell stories that lack a clear agent. Diagnosis and social networks tap differences in how individuals experience entry into care. Individuals diagnosed with bipolar disorder or who have larger, closer social networks are more likely to tell stories of coercion. We discuss the theoretical, methodological, and clinical implications of findings drawn from this examination of clients' storiesmental health utilization coercion

    Integrated proteomic and transcriptomic profiling identifies aberrant gene and protein expression in the sarcomere, mitochondrial complex I, and the extracellular matrix in Warmblood horses with myofibrillar myopathy

    No full text
    Abstract Background Myofibrillar myopathy in humans causes protein aggregation, degeneration, and weakness of skeletal muscle. In horses, myofibrillar myopathy is a late-onset disease of unknown origin characterized by poor performance, atrophy, myofibrillar disarray, and desmin aggregation in skeletal muscle. This study evaluated molecular and ultrastructural signatures of myofibrillar myopathy in Warmblood horses through gluteal muscle tandem-mass-tag quantitative proteomics (5 affected, 4 control), mRNA-sequencing (8 affected, 8 control), amalgamated gene ontology analyses, and immunofluorescent and electron microscopy. Results We identified 93/1533 proteins and 47/27,690 genes that were significantly differentially expressed. The top significantly differentially expressed protein CSRP3 and three other differentially expressed proteins, including, PDLIM3, SYNPO2, and SYNPOL2, are integrally involved in Z-disc signaling, gene transcription and subsequently sarcomere integrity. Through immunofluorescent staining, both desmin aggregates and CSRP3 were localized to type 2A fibers. The highest differentially expressed gene CHAC1, whose protein product degrades glutathione, is associated with oxidative stress and apoptosis. Amalgamated transcriptomic and proteomic gene ontology analyses identified 3 enriched cellular locations; the sarcomere (Z-disc & I-band), mitochondrial complex I and the extracellular matrix which corresponded to ultrastructural Z-disc disruption and mitochondrial cristae alterations found with electron microscopy. Conclusions A combined proteomic and transcriptomic analysis highlighted three enriched cellular locations that correspond with MFM ultrastructural pathology in Warmblood horses. Aberrant Z-disc mechano-signaling, impaired Z-disc stability, decreased mitochondrial complex I expression, and a pro-oxidative cellular environment are hypothesized to contribute to the development of myofibrillar myopathy in Warmblood horses. These molecular signatures may provide further insight into diagnostic biomarkers, treatments, and the underlying pathophysiology of MFM
    corecore