451 research outputs found

    A CutFEM method for two-phase flow problems

    Full text link
    In this article, we present a cut finite element method for two-phase Navier-Stokes flows. The main feature of the method is the formulation of a unified continuous interior penalty stabilisation approach for, on the one hand, stabilising advection and the pressure-velocity coupling and, on the other hand, stabilising the cut region. The accuracy of the algorithm is enhanced by the development of extended fictitious domains to guarantee a well defined velocity from previous time steps in the current geometry. Finally, the robustness of the moving-interface algorithm is further improved by the introduction of a curvature smoothing technique that reduces spurious velocities. The algorithm is shown to perform remarkably well for low capillary number flows, and is a first step towards flexible and robust CutFEM algorithms for the simulation of microfluidic devices

    Virtual Delamination Testing through Non-Linear Multi-Scale Computational Methods: Some Recent Progress

    Get PDF
    This paper deals with the parallel simulation of delamination problems at the meso-scale by means of multi-scale methods, the aim being the Virtual Delamination Testing of Composite parts. In the non-linear context, Domain Decomposition Methods are mainly used as a solver for the tangent problem to be solved at each iteration of a Newton-Raphson algorithm. In case of strongly nonlinear and heterogeneous problems, this procedure may lead to severe difficulties. The paper focuses on methods to circumvent these problems, which can now be expressed using a relatively general framework, even though the different ingredients of the strategy have emerged separately. We rely here on the micro-macro framework proposed in (Ladev\`eze, Loiseau, and Dureisseix, 2001). The method proposed in this paper introduces three additional features: (i) the adaptation of the macro-basis to situations where classical homogenization does not provide a good preconditioner, (ii) the use of non-linear relocalization to decrease the number of global problems to be solved in the case of unevenly distributed non-linearities, (iii) the adaptation of the approximation of the local Schur complement which governs the convergence of the proposed iterative technique. Computations of delamination and delamination-buckling interaction with contact on potentially large delaminated areas are used to illustrate those aspects

    Statistical extraction of process zones and representative subspaces in fracture of random composite

    Get PDF
    We propose to identify process zones in heterogeneous materials by tailored statistical tools. The process zone is redefined as the part of the structure where the random process cannot be correctly approximated in a low-dimensional deterministic space. Such a low-dimensional space is obtained by a spectral analysis performed on pre-computed solution samples. A greedy algorithm is proposed to identify both process zone and low-dimensional representative subspace for the solution in the complementary region. In addition to the novelty of the tools proposed in this paper for the analysis of localised phenomena, we show that the reduced space generated by the method is a valid basis for the construction of a reduced order model.Comment: Submitted for publication in International Journal for Multiscale Computational Engineerin

    Nitsche’s method for two and three dimensional NURBS patch coupling

    Get PDF
    We present a Nitche’s method to couple non-conforming two and three-dimensional NURBS (Non Uniform Rational B-splines) patches in the context of isogeometric analysis (IGA). We present results for linear elastostatics in two and and three-dimensions. The method can deal with surface-surface or volume-volume coupling, and we show how it can be used to handle heterogeneities such as inclusions. We also present preliminary results on modal analysis. This simple coupling method has the potential to increase the applicability of NURBS-based isogeometric analysis for practical applications

    Bridging Proper Orthogonal Decomposition methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems

    Get PDF
    This article describes a bridge between POD-based model order reduction techniques and the classical Newton/Krylov solvers. This bridge is used to derive an efficient algorithm to correct, "on-the-fly", the reduced order modelling of highly nonlinear problems undergoing strong topological changes. Damage initiation problems are addressed and tackle via a corrected hyperreduction method. It is shown that the relevancy of reduced order model can be significantly improved with reasonable additional costs when using this algorithm, even when strong topological changes are involved

    An integrated design-analysis framework for three dimensional composite panels

    Get PDF
    We present an integrated design-analysis framework for three dimensional composite panels. The main components of the proposed framework consist of (1) a new curve/surface offset algorithm and (2) the isogeometric concept recently emerged in the computational mechanics community. Using the presented approach, finite element analysis of composite panels can be performed with the only input is the geometry representation of the composite surface. In this paper, non-uniform rational B-splines (NURBS) are used to represent the panel surfaces. A stress analysis of curved composite panel with stiffeners is provided to demonstrate the proposed framework
    corecore