451 research outputs found
A CutFEM method for two-phase flow problems
In this article, we present a cut finite element method for two-phase
Navier-Stokes flows. The main feature of the method is the formulation of a
unified continuous interior penalty stabilisation approach for, on the one
hand, stabilising advection and the pressure-velocity coupling and, on the
other hand, stabilising the cut region. The accuracy of the algorithm is
enhanced by the development of extended fictitious domains to guarantee a well
defined velocity from previous time steps in the current geometry. Finally, the
robustness of the moving-interface algorithm is further improved by the
introduction of a curvature smoothing technique that reduces spurious
velocities. The algorithm is shown to perform remarkably well for low capillary
number flows, and is a first step towards flexible and robust CutFEM algorithms
for the simulation of microfluidic devices
Virtual Delamination Testing through Non-Linear Multi-Scale Computational Methods: Some Recent Progress
This paper deals with the parallel simulation of delamination problems at the
meso-scale by means of multi-scale methods, the aim being the Virtual
Delamination Testing of Composite parts. In the non-linear context, Domain
Decomposition Methods are mainly used as a solver for the tangent problem to be
solved at each iteration of a Newton-Raphson algorithm. In case of strongly
nonlinear and heterogeneous problems, this procedure may lead to severe
difficulties. The paper focuses on methods to circumvent these problems, which
can now be expressed using a relatively general framework, even though the
different ingredients of the strategy have emerged separately. We rely here on
the micro-macro framework proposed in (Ladev\`eze, Loiseau, and Dureisseix,
2001). The method proposed in this paper introduces three additional features:
(i) the adaptation of the macro-basis to situations where classical
homogenization does not provide a good preconditioner, (ii) the use of
non-linear relocalization to decrease the number of global problems to be
solved in the case of unevenly distributed non-linearities, (iii) the
adaptation of the approximation of the local Schur complement which governs the
convergence of the proposed iterative technique. Computations of delamination
and delamination-buckling interaction with contact on potentially large
delaminated areas are used to illustrate those aspects
Statistical extraction of process zones and representative subspaces in fracture of random composite
We propose to identify process zones in heterogeneous materials by tailored
statistical tools. The process zone is redefined as the part of the structure
where the random process cannot be correctly approximated in a low-dimensional
deterministic space. Such a low-dimensional space is obtained by a spectral
analysis performed on pre-computed solution samples. A greedy algorithm is
proposed to identify both process zone and low-dimensional representative
subspace for the solution in the complementary region. In addition to the
novelty of the tools proposed in this paper for the analysis of localised
phenomena, we show that the reduced space generated by the method is a valid
basis for the construction of a reduced order model.Comment: Submitted for publication in International Journal for Multiscale
Computational Engineerin
Nitsche’s method for two and three dimensional NURBS patch coupling
We present a Nitche’s method to couple non-conforming two and three-dimensional NURBS (Non Uniform Rational B-splines) patches in the context of isogeometric analysis (IGA). We present results for linear elastostatics in two and and three-dimensions. The method can deal with surface-surface or volume-volume coupling, and we show how it can be used to handle heterogeneities such as inclusions. We also present preliminary results on modal analysis. This simple coupling method has the potential to increase the applicability of NURBS-based isogeometric analysis for practical applications
Bridging Proper Orthogonal Decomposition methods and augmented Newton-Krylov algorithms: an adaptive model order reduction for highly nonlinear mechanical problems
This article describes a bridge between POD-based model order reduction
techniques and the classical Newton/Krylov solvers. This bridge is used to
derive an efficient algorithm to correct, "on-the-fly", the reduced order
modelling of highly nonlinear problems undergoing strong topological changes.
Damage initiation problems are addressed and tackle via a corrected
hyperreduction method. It is shown that the relevancy of reduced order model
can be significantly improved with reasonable additional costs when using this
algorithm, even when strong topological changes are involved
An integrated design-analysis framework for three dimensional composite panels
We present an integrated design-analysis framework for three dimensional composite panels. The main components of the proposed framework consist of (1) a new curve/surface offset algorithm and (2) the isogeometric concept recently emerged in the computational mechanics community. Using the presented approach, finite element analysis of composite panels can be performed with the only input is the geometry representation of the composite surface. In this paper, non-uniform rational B-splines (NURBS) are used to represent the panel surfaces. A stress analysis of curved composite panel with stiffeners is provided to demonstrate the proposed framework
- …
