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Abstract

We present an integrated design-analysis framework for three dimensional composite panels. The main components of
the proposed framework consist of (1) a new curve/surface offset algorithm and (2) the isogeometric concept recently
emerged in the computational mechanics community. Using the presented approach, finite element analysis of composite
panels can be performed with the only input being the geometry representation of the composite surface. In this paper,
non-uniform rational B-splines (NURBS) are used to represent the panel surfaces. A stress analysis of curved composite
panel with stiffeners is provided to demonstrate the proposed framework.

Keywords: isogeometric analysis, B-spline, NURBS, finite elements, CAD, composite panels, offset curves/surfaces

1. Introduction

Two important industries in engineering are Computer Aided Design (CAD) and Finite Element Analysis (FEA).
FEA was developed to improve analysis in engineering and CAD was developed to improve the design process. The
FEA evolution started in the 1940s whereas the CAD became a mature field much later in the 1970s. That explains
why different mathematical models have been employed to represent the same object. In FEA, trivariate polynomials
of low order (usually one or two) are used to approximate the solid object while in CAD, the same object is represented
by NURBS (Non Uniform Rational B-splines). Due to the difference in the geometrical representation, the transfer
from a CAD model to a FEA model requires another technology–the so-called mesh generators that transform the
CAD model in to a finite element (FE) mesh that is suitable for a FE computation. Meshing complex structures is,
however, a very time-consuming process. Furthermore there is no way to go from FEA back to CAD.

It is probably that the first work that attempted to link CAD and FEA was the work of Kagan and his co-workers
[1, 2]. In the referred works, B-splines were utilized to represent the solid geometry in the FE model. Therefore,
both CAD and FEA models employ the same technology–B-splines to construct the object of interest. Along this
line of research, another notable contribution was made by Cirak et al [3, 4] in which subdivision surface, which is
a CAD technology extensively used in animation [5], was used in a finite element thin shell model. It was not until
2005 that the idea was generalized and a new field was emerged–the isogeometric analysis (IGA) by Hughes and his
co-workers in the seminal paper [6] where NURBS were adopted in FE solid/structural/fluid mechanics models. Since
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this seminal paper, a monograph has been published entirely on the subject [7] and applications have been found in
several fields including structural mechanics, solid mechanics, fluid mechanics, biomechanics and contact mechanics.
It has also gained popularity in shape optimization community, see e.g., [8, 9] and references therein. We refer to
[10, 11] for recent works on IGA with industrial applications and [12] for an overview of IGA, its recent developments
and its computer implementation aspects. Not only IGA reduces the gap between CAD and FEA, but also it has
triggered a new drive in spline research after a quiet period, see for instance the locally refined splines reported in [13],
the polynomial splines over hierarchical T-meshes (PHT) in [14, 15]. There is an increasing communication between
CAD and FEA researchers, see e.g., [16, 17, 18, 19, 20]. Particularly, in [16], a new concept coined analysis-aware-
modeling was proposed in which CAD model parameters are selected to facilitate isogeometric analysis. T-splines–a
generalization of NURBS developed in [21] were also used in a FE context, see e.g., [19].

In this paper we are going to present an integrated CAD-FEA framework for design and analysis of composite
panels which have been extensively used in automotive and aircraft industries due to their high strength and low
weight. As a CAD object, the composite panel is described by a NURBS surface which can be directly imported into
our isogeometric finite element code. Since our ultimate goal is to perform a failure analysis of the composite panel
due to delamination at the interfaces between the plies of which promising preliminary results are reported in [22, 23],
a trivariate representation of the composite is required. It should be emphasized that if a shell model is sufficient, then
the bivariate NURBS surfaces can be directly used in a FE package without any further complication see e.g., [24, 25].
To this end, we develop a simple algorithm that for a given NURBS surface and a thickness of the panel, a trivariate
NURBS can be built. The algorithm is based on the computation of offsets of a NURBS surface which is a topic of
extensive research in the CAD community, see e.g., [26, 27, 28, 29, 30] and references therein. However existing offset
algorithms cannot be used directly for our FE analyses, we therefore devise a new algorithm to compute offsets of
NURBS curves and surfaces. Our contribution certainly enlarges the application field of IGA to composite structures.

Traditional methods used to approximate offset curves (surfaces) fall into two categories, those that use the geometry
and topology of the original curve (surface) to manipulate the control points to produce an offset approximation, and
those that use sampling points from the exact offset curve (surface) as input for an approximation method that fits a
curve (surface) to the offset. Our offsetting algorithm falls into the latter group and is able to generate exact offsets
for circles and lines. It also produces non self-intersecting offset curves. We use an optimization algorithm (specially
the gradient descent method) to iteratively move the sought-for offset curve/surface from a starting position to the
”exact” offset curve/surface. We then use this algorithm to generate analysis-suitable trivariate NURBS solids which
model a class of objects of important applications–curved composite panels.

The remainder of the paper is organized as follows. Section 2 presents a new algorithm for computing of offset
of NURBS curves and surfaces. Section 3 is devoted to a discussion on isogeometric finite elements followed by some
numerical examples given in Section 4. Section 5 ends the paper with some concluding remarks.

2. Computing offset of NURBS curves/surfaces

2.1. NURBS curves and surfaces

We briefly discuss the B-splines/NURBS curves and surfaces here, for details we refer to the standard textbook
[31]. NURBS basis functions are defined as

Ri,p(ξ) =
Ni,p(ξ)wi

W (ξ)
=

Ni,p(ξ)wi
∑n

j=1 Nj,p(ξ)wj

(1)

where Ni,p(ξ) denotes the ith B-spline basis function of order p and wi are a set of n positive weights. Selecting
appropriate values for the wi permits the description of many different types of curves including polynomials and
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circular arcs. For the special case in which wi = c, i = 1, 2, . . . , n the NURBS basis reduces to the B-spline basis of
which definition is described in what follows.

Given a knot vector Ξ = {ξ1, ξ2, . . . , ξn+p+1}, the B-spline basis functions are defined recursively starting with the
zeroth order basis function (p = 0) given by

Ni,0(ξ) =

{

1 if ξi ≤ ξ < ξi+1,

0 otherwise
(2)

and for a polynomial order p ≥ 1

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξi+p+1 − ξ

ξi+p+1 − ξi+1
Ni+1,p−1(ξ) (3)

This is referred to as the Cox-de Boor recursion formula. Note that the first and last knots of Ξ have p+1 multiplicity
so that the NURBS basis are interpolatory there.

A NURBS curve is given by

C(ξ) =

n
∑

I=1

RI,p(ξ)PI (4)

where n denotes the number of basis functions–also the number of control points and PI ∈ R
d (d is the number of

spatial directions) are the control points.
Given two knot vectors (one for each direction) Ξ = {ξ1, ξ2, . . . , ξn+p+1} and H = {η1, η2, . . . , ηm+q+1} and a

control net Pi,j ∈ R
d, a tensor-product NURBS surface is defined as

S(ξ, η) =

n
∑

i=1

m
∑

j=1

Rp,q
i,j (ξ, η)Pi,j (5)

where Rp,q
i,j are given by

Rp,q
i,j (ξ, η) =

Ni(ξ)Mj(η)wi,j
∑n

î=1

∑m

ĵ=1 Nî(ξ)Mĵ(η)wî,ĵ

(6)

Defining a global index as
I = n(j − 1) + i (7)

Eq. (5) can be rewritten in a more compact form as

S(ξ) =
n×m
∑

I=1

Rp,q
I (ξ)PI (8)

in which Rp,q
I is a bivariate NURBS basis function defined as Rp,q

I (ξ) = Rp,q
i,j (ξ, η). This compact form will be used

extensively in an analysis context. A definition of a trivariate tensor-product NURBS solid is similar and hence not
presented here.
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2.2. NURBS curve offsets

The offset curve of C(ξ) = (x(ξ), y(ξ))T, denoted by Co(ξ) is defined by

Co(ξ) = C(ξ) + tn(ξ) (9)

in which t is the offset distance which is a constant and n(ξ) is the unit normal defined by for planar curves

n(ξ) =
(−y′(ξ), x′(ξ))

√

x′(ξ)2 + y′(ξ)2
(10)

Due to the square root appeared in the unit normals, offset curves cannot be exactly represented as polynomial or
rational curves. That is the reason one has to resort to approximations. Note that the notation x′(ξ) refers to the first
derivative of x with respect to ξ.

The n control points of the base curve are represented by P0. Our goal is to generate an offset curve with offset
distance denoted by t from the given (so-called progenitor) B-spline curve subjected to the requirement that the offset
curve must have the same parametrization as the original curve. That is, the offset curve is of p degree and has the
same knot vector Ξ as its progenitor. The control points of the offset curve are denoted by P and are the unknowns5

to be computed. The requirement that the offset curve is of the same format as its progenitor is due to the fact that
our goal is to build a trivariate NURBS from the original surface and its offset surface. This restriction comes from
the tensor-product nature of NURBS surfaces/solids.

In the first step, a set of points on the offset curve is generated. To this end, we divide the knots Ξ into a number
of equal intervals. For a knot ξi(i = 1,m), an offset point is given by

x0i =
n
∑

I

RI(ξi)P0I

xi = x0i + tni

(11)

where ni represents the unit normal vector to the progenitor curve at point x0i. Once computed, the set of offset points
{xi}mi=1 is fixed.

Since the offset curve goes through the first and last control points with open knots vectors, we have P1 = x1

and Pn = xm. Hence, there are (n − 2) remaining control points to be determined. As the first guess for the
gradient descent method, we may assume that the offset curve is initially a line i.e., its control points locate on the line
connecting P1 and Pn. Another option is to choose the control points coincides with the control points of the base

curve P
(0)
i = P0i, (i = 2, . . . , n − 1). The superscript (k) is used to indicate quantities at k iteration in the gradient

decent algorithm– k is the iteration index. On this initial offset curve, a set of sampling points {x
(k)
i }

m
i=1 (k = 0) is

generated which has the same number of points as {xi}. We then define a system of springs in which each spring

connects one point in {xi} and one point in {x
(0)
i }. The energy of this system of springs is given by

E(P) =
1

2

m
∑

i

ksui(P)2 (12)

5In our current formulation only the coordinates of the control points are the unknowns to be determined. The weights are inherited

from the weights of the base curve. It is certainly possible to consider the weights as unknowns. However this is not yet studied in the scope

of this contribution.
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in which ks represents the spring stiffness. In our implementation, ks = 1 is used. ui is computed as the distance
between two points defining the ith spring . As E is approaching its minimum value, the sought-for offset curve is
moving towards the ”exact” offset curve defined by the offset points {xi}. Note that the energy is a function of the
unknown control points P that defines the sought-for offset curve.

In order to find the minimum of E we use the gradient descent method combined with a line search. The control
points of the first iteration P(1) are then computed according to

P(1) = P(0) − γ(0)∇E(0)

γ(0) = arg min
γ(0)

E(P(0) − γ(0)∇E(0))
(13)

where γ denotes the so-called step length. The second equation of Eq. (13) denotes a one dimensional minimization
problem which is therein solved using a backtracking line search method [32]. The proposed algorithm is graphically
illustrated in Fig. (1) and given in Algorithm 1. The iterative process proceeds until the energy is smaller than a
predefined tolerance ǫ.

(a) (b)

(c) (d)

x0i

xi
ni

spring

sampling points

offset points

Figure 1: The proposed algorithm to create an offset curve of a given B-spline curve: (a) the original curve, (b) a set
of offset points is generated, (c) sampling points on the initial guess offset curve and a system of springs connecting
those sampling points and the offset points and (d) the final offset curve is obtained when the energy of the spring is
minimum.

For an analytical expression for the energy E is not available, we resort to a numerical differentiation to compute
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the energy gradient

∇E(k) =
1

h









...

E(P
(k)
I + [h h])− E(P

(k)
I )

...









(14)

in which ∇E(k) is a matrix of dimension (n − 2)× 2. In words, to compute the energy gradient along the x-direction
at a specific control point, we move it along the x-direction a very small distance h (in our implementation, a value of
10−8 was used for h) and compute the change in the energy. Note that when a control point is changed, the sought-for

NURBS curve is changed and so are the sampling points {x
(k)
i }.

Algorithm 1 Curve/surface offset algorithm.

1: compute the offset points {xi} (Eq. (11));
2: compute initial control points P(0);
3: k = 0, e = 100;
4: while e ≥ ǫ do
5: compute sampling points on the offset curve;
6: compute the energy e using Eq. (12);
7: compute the gradient ∇E(k) using Eq. (14);
8: compute the step length γ(k);
9: update control points P(k+1) = P(k) − γ(k)∇E(k);

10: compute sampling points on the offset curve;
11: compute the energy e using Eq. (12);
12: k ← k + 1
13: end while

As the first example to test our algorithm, we consider a circle as shown in Fig. (2). We are going to offset it
inwards. The circle is exactly represented by a quadratic (p = 2) NURBS curve with 9 control points. We use 20 offset
points (star points in the right of the referred figure). The initial control points of the offset curve are denoted by green
solid circles which are, except the first and last points, the control points of the progenitor circle. The blue squares
denote the 20 sampling points on the initial offset curve. For an exact offset of a circle exists, the proposed algorithm
converges to a very high accuracy (we used a tolerance of 10−4).

As a second example, let us build the offset of a cubic Bézier curve (having 4 control points) as given in Fig. (3).
It is obvious that the error is large (Fig. (3a)) since only 4 control points were used. If a higher accuracy is desired,
it is simply to use more control points for defining the offset curve. As shown in Fig. (3)b the offset was sufficiently
accurate with 10 control points. This example illustrates that our curve offset algorithm can be well applied for cases
in which the requirement of having the same parametrization is relaxed (for CAD applications for example). For those
cases, an improvement of the proposed algorithm can be made by using an adaptive optimization scheme. We start
with a curve of the same format as its base and perform the optimization given in Algorithm 1. If the error is found
to be larger than a predefined tolerance, new control points are added and Algorithm 1 is used again. However we do
not further follow this path so as to focus on our analysis target.
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Figure 2: Offset of a circle using the proposed algorithm: 20 sampling points (m = 20) are used. Stars denote offset
points whereas the green squares are the sampling points on the initial offset curve of which the control points are the
green filled circles.

(a) (b)

Figure 3: Cubic Bézier curve example: (a) offset curve has the same number of CPs as the original curve and (b) offset
curve has 10 CPs. The dotted lines denote the ”exact” offset curve that joins the offset points.

2.3. NURBS surface offset

The proposed algorithm for curves can be straightforwardly extended to B-splines surfaces. We refer to Fig. (4)
for such an application of offsetting a bi-quadratic Bézier surface. The offset surface has the same parametrization as
its base. The method converged in 4 iterations for a tolerance ǫ = 0.1. In this context, it should be emphasized that
the gradient descent algorithm converges linearly (and yet requires only first derivatives of the objective function E).
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Therefore, more involved Newton-like methods should be adopted if real-time generation of offset surfaces is required.
It should be emphasized that our aim was not a real-time curve/surface offsetting algorithm.

(a) (b)

Figure 4: Generation of offset surface: (a) original surface and a grid of 20×20 offset points and (b) the resulting offset
surface.

2.4. Non self-intersecting offset curves

When the instantaneous radius of curvature of the curve is less than the offset distance there will be self intersection
of the offset curve, see Fig. (5a). After removing the offset points in trouble, one obtains the ”exact” offset curve as
shown in Fig. (5b). In order to get a good approximation to the offset curve, we used a cubic Bézier with 6 control
points and the result is presented in Fig. (5c). As can be seen, the proposed offset algorithm was able to build non self-
intersecting offset curves. We, however, do not go further for this special case keeping in mind that our target–composite
panels do not have high curvatures so that self intersection would occur.

2.5. Solid NURBS construction from boundary representations of a composite panel

In a CAD environment, a curved 3D composite panel is usually represented by a NURBS surface. This is often not
sufficient from an analysis point of view if a detailed modeling of the physical behavior through the thickness of the
panel is to be performed. In this case, a trivariate solid representation of the panel surface is needed. In this section
we are going to show that the offset algorithm described in Section 2 can be used for this purpose.

For ease of demonstration, let us first consider the case of generating a bivariate surface from a NURBS curve as
shown in Fig. (6). In the left of the referred figure, a given B-spline curve and its offset that has the same parametrization
are given. Thanks to the same format of these curves, a tensor-product surface bounded by these curves can be easily
obtained. The knot vector along the offset distance is given simply as H = {0, 0, 1, 1}. The control points of the
surface are the control points of the base curve and its offset. The right of the figure shows a refined model which is
suitable for FE calculations. The idea is straightforwardly extended to NURBS surfaces as illustrated in Fig. (7).
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(a) (b) (c)

Figure 5: A cubic Bézier curve with radius of curvature less than the offset distance : (a) offset points with local
intersection (b) after removing and (c) offset curve.

C(ξ)

Co(ξ)

Figure 6: Generation of surface using offset curves (left) and refined model suitable for a FE analysis (right).

As a 3D example with more complex geometry, we consider a singly curved thick-walled laminate which was studied
in [33]. Air-intakes of formula race cars and strongly curved regions of ship hulls provide examples for such thick-walled
curved laminates designs. The geometry of the sample is given in Fig. (8). Since the geometry representation of
the object of interest is the same in both CAD and FEA environment, it is very straightforward and fast to get an
analysis-suitable model when changes are made to the CAD model, for instance changing the thickness t. This is in
sharp contrary to Lagrange finite elements which uses a different geometry representation.

The geometry of the singly curved thick-walled laminates can be built by first creating a NURBS curve as shown in
Fig. (9). Next, an offset of this curve with offset distance t is created. Having these two curves, a NURBS surface can
be constructed. Finally, the cross section is extruded along the width direction. The corresponding NURBS meshes to
be readily used in a FEM environment are given in Fig. (10). FE analysis of this structure can be found in Ref.[23].

Remark 2.1. The computational aspects of our algorithm are listed as follows

• How many sampling points are enough;

• How to distribute those points?;

• How the initial guess of the curve effects the result?
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S(ξ, η)

So(ξ, η)

(a)

(b)

Figure 7: Generation of solids: (a) extruded surface and (b) free form surface.

About the first question the algorithm presented in Ref. [26] can be used. As far as the second question is concerned,
it all depends on the curvature of the base curve. Usually more sampling points should be placed in the place where
the curvature is high. However, we simply used a uniform distribution because in our application, the curve is quite
smooth. From our experiences, the initial guess of the offset curve has a slight impact on the convergence rate.

3. Isogeometric analysis

The isogeometric concept refers to the utilization of the basis functions used to represent the geometry (usually
they are NURBS but other CAD technologies such as subdivision surfaces can be equally employed) to approximate
the field variables. This concept can be used in a finite element context, a boundary element context [34, 11] or even
in a meshfree framework. In this paper, we use an isogeometric finite element method (IGAFEM) which is suitable for
nonlinear analyses. In what follows, we briefly present the main ideas of IGAFEM for two dimensional linear elasticity
problems, extension to three dimensional case is straightforward. We refer to [6, 7] and [12] for details.

Consider a domain Ω, bounded by Γ. The boundary is partitioned into two sets: Γu and Γt with displacements
prescribed on Γu and tractions t prescribed on Γt: Γ = Γt ∪ Γu, Γt ∩ Γu = ∅. The weak form of a linear elastostatics
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ll L

h
t

w

Figure 8: Singly curved thick-walled laminates: geometry configuration. The thickness t is constant. Dimensions can
be found in Ref.[23].

base curve

offset curve

Figure 9: Singly curved thick-walled laminates: building the cross section as a B-spline surface made of the base curve
and its offset. The red points denote the control points. It should be emphasized that the offset curve cannot be built
simply using an extrusion operation on the base curve.
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Figure 10: Singly curved thick-walled laminates: NURBS meshes.

problem is to find the displacement field u in the trial space 6, such that for all test functions δu in the test space 7,

∫

Ω

ε(u) : D : ε(δu)dΩ =

∫

Γt

t · δudΓ +

∫

Ω

b · δudΩ (15)

where the elasticity matrix is denoted by D, b refers to a body force, ε represents the strain field which is taken as the
symmetric part of the displacement gradient ε = 1

2 (∇u +∇Tu). Using the Bubnov-Galerkin method where the same
shape functions RI–the NURBS basis functions– are used for u and δu we can write

u(x) =

nn
∑

I

RI(ξ)uI , δu(x) =

nn
∑

I

RI(ξ)δuI (16)

where uI = [uxI , uyI ]
T is the nodal unknown vector, δuI denote the nodal displacement variations and nn is the

number of control points. Note the similarity of the above equations with Eq. (8). This is the well known isoparametric
concept in FEM.

Substitution of these approximations into Eq. (15) and using the arbitrariness of the nodal displacement variations
δuI gives the discrete equations

K u = f (17)

with

KIJ =

∫

Ω

BT
I DBJdΩ, fI =

∫

Γt

RItdΓ +

∫

Ω

RIbdΩ (18)

In two dimensions, the strain-displacement BI matrix is given by

BI =





RI,x 0
0 RI,y

RI,y RI,x



 (19)

Solving the system of linear equations in Eq. (17) gives the nodal values u based on which derived quantities such

6contains C0 functions
7contains C0 functions but vanishes on Γu
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as strains and stresses can be determined at any point. For details on FEM, we refer to standard textbooks on the
subject e.g., [35, 36]. Note that RI,x denotes the first order partial derivative of RI with respect to x.

x

y

�

ξ̄

ξ

η

η̄

ξi ξi+1

ηi

ηi+1

(−1,−1)

(1, 1)

Ω̂e

Ωe

ξ-lines

η-lines

images of ξ and η-lines

Physical domain

Parametric domain

Parent domain

Figure 11: Definition of domains used for integration in isogeometric analysis.

Domain integrals as appeared in Eq. (18) are numerically evaluated as in standard FEM. However, there is one
difference because the NURBS basis are defined in the parameter space or parametric domain whereas the quadrature
rule are defined in the so-called bi-unit parent domain, see Fig. (11). For a function f(x, y), one writes

∫

Ω

f(x, y)dΩ =
nel
⋃

e=1

∫

Ωe

f(x, y)dΩe =
nel
⋃

e=1

∫

Ω̂e

f(x(ξ), y(η))|Jξ |dΩ̂e =
nel
⋃

e=1

∫

�

f(ξ̄, η̄)|Jξ||Jξ̄|d� (20)

where
⋃

represents the standard assembly operator, nel denotes the number of finite elements which are defined as
non-zero knot spans, |Jξ| denotes the determinant of the Jacobian of the transformation from the parametric domain to
the physical domain and |Jξ̄| represents the determinant of the Jacobian of the transformation from the parent domain
to the parametric domain. This transformation, which defines a map from a square to a rectangle, is trivial and
hence not discussed here. The final integral can be performed using standard Gauss-Legendre quadrature. Specially, a
(p+1)× (q+1) Gaussian quadrature is adopted for two dimensional elements with p and q denoting the orders of the
NURBS basis in the ξ and η directions, respectively.

There exists some open-source IGA packages written in Matlab, for example GeoPDEs reported in [37], ISOGAT [38]
and MIGFEM, written by the first author, hosted at https://sourceforge.net/projects/cmcodes/ and described
in [12]. Our offset algorithm is implemented in MIGFEM.

4. Examples

In this section we present a stress analysis of a curved composite panel with stiffeners as given in Fig. (12). The panel
is made from an orthotropic elastic material with material constants E11 and E22 being the Youngs moduli of the ply
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in fiber direction and transverse direction, respectively, ν21 and ν23 are the longitudinal and transverse Poissons ratios,
and G12 is the longitudinal shear modulus. We used E11 = 115 GPa, E22 = E33 = 8.5 GPa, ν12 = ν23 = ν31 = 0.29,
G12 = G31 = 4.5 GPa. Fig. (13) presents the geometry modeling procedure. We start with the skin and stiffener
curves. Using the proposed offset algorithm yields the offset curves and from that bivariate B-spline surfaces can be
defined. In the next step, extrusion was made to create trivariate B-spline solids which are analysis-suitable. Finally,
the correct number of plies are built using knot insertion along the thickness direction exploiting the Cp−m property
of NURBS where m denotes the knot multiplicity. Each ply interface represents a surface where the displacement
field should be C0 so that the strain field is discontinuous. Note that along the thickness direction a linear basis was
used, the knots to be inserted can be easily determined. For example, assuming that there are 8 plies of the same
thickness, hence the knots to be inserted are [1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8]. Note that the original knot vector along
the thickness direction was [0, 0, 1, 1]. For the purpose of analysis, a more refined model is required which is obtained
by adopting the so-called p-refinement (order elevated in CAD terminology) followed by a h-refinement (knot insertion
in CAD terminology). This is the so-called k-refinement [6] which is a unique feature of IGA compared to standard
FEM.

X

Y

stiffener

skin

p

fiber

θ

Figure 12: A curved composite panel with two curved stiffeners: the length of the panel is 50 mm and the width is
50 mm. The skin/stiffeners consist of 8 plies (with ply thickness of 0.1 mm) with stacking [0/90/0/90]s. The fiber
direction is denoted by θ.

(a) skin curve (quadratic B-spline)
(b) stiffener curves (quadratic B-splines)

(c) skin and stiffener curves together (d) with their offsets

(e) bivariate B-spline surfaces (f) trivariate B-spline solid

Figure 13: A curved composite panel with two curve stiffeners: geometry modeling procedure.
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For analysis we used a quadratic-quadratic-linear (X direction, Y direction (thickness) and Z direction) NURBS
representation. One layer of elements is used for each ply. This NURBS can be directly used in a conforming multi-
patch IGA code (we used our open source MIGFEM [12] for this analysis). Figure 14 shows the contour plot of σXX .
Visualization was performed using Paraview [39]. Note that we have restricted to conforming multiple NURBS patch
discretization where at the patch interface the control points must match each other. Methods to relax this restriction
was recently presented in [40] which provides more flexibility.

Figure 14: A curved composite panel with two curve stiffeners: stress contour plot.

5. Conclusion

We presented an integrated CAD-FEA framework for designing and modeling three dimensional curved composite
panels. To this end, a new algorithm was presented to compute offsets of NURBS curves and surfaces which allows
a trivariate representation of NURBS surface to be constructed. The geometry object can be directly used in a FE
analysis using the isogeometric analysis concept. Stress analyses of a three dimensional curved composite panel with
curved stiffeners demonstrated the effectiveness of the proposed integrated CAD-FEA framework. It facilitates the
design of composite panels by allowing (1) CAD data to be directly used in a FEA package, (2) parameter studies in
which the number of plies, the ply thickness can be easily varied and (3) an automatic generation of cohesive interface
elements for delamination analysis [23]. Preliminary proof-of-concept examples were provided to demonstrate the
capabilities of the offset algorithm and isogeometric analysis in the context of design and analysis of composite panels.
In depth studies and more complex analyses are under the way. For knowledge sharing, our work will be released as
a part in the open source IGA code, MIGFEM hosted at https://sourceforge.net/projects/cmcodes/, developed
by the same authors.
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