472 research outputs found

    SARS-CoV-2 infection following booster vaccination: Illness and symptom profile in a prospective, observational community-based case-control study

    Get PDF
    BACKGROUND: Booster COVID-19 vaccines have shown efficacy in clinical trials and effectiveness in real-world data against symptomatic and severe illness. However, some people still become infected with SARS-CoV-2 following a third (booster) vaccination. This study describes the characteristics of SARS-CoV-2 illness following a third vaccination and assesses the risk of progression to symptomatic disease in SARS-CoV-2 infected individuals with time since vaccination. METHODS: This prospective, community-based, case-control study used data from UK-based, adult (≥18 years) users of the COVID Symptom Study mobile application, self-reporting a first positive COVID-19 test between June 1, 2021 and April 1, 2022. To describe the characteristics of SARS-CoV-2 illness following a third vaccination, we selected cases and controls who had received a third and second dose of monovalent vaccination against COVID-19, respectively, and reported a first positive SARS-CoV-2 test at least 7 days after most recent vaccination. Cases and controls were matched (1:1) based on age, sex, BMI, time between first vaccination and infection, and week of testing. We used logistic regression models (adjusted for age, sex, BMI, level of social deprivation and frailty) to analyse associations of disease severity, overall disease duration, and individual symptoms with booster vaccination status. To assess for potential waning of vaccine effectiveness, we compared disease severity, duration, and symptom profiles of individuals testing positive within 3 months of most recent vaccination (reference group) to profiles of individuals infected between 3 and 4, 4–5, and 5–6 months, for both third and second dose. All analyses were stratified by time period, based on the predominant SARS-CoV-2 variant at time of infection (Delta: June 1, 2021–27 Nov, 2021; Omicron: 20 Dec, 2021-Apr 1, 2022). FINDINGS: During the study period, 50,162 (Delta period) and 162,041 (Omicron) participants reported a positive SARS-CoV-2 test. During the Delta period, infection following three vaccination doses was associated with lower odds of long COVID (symptoms≥ 4 weeks) (OR=0.83, CI[0.50–1.36], p < 0.0001), hospitalisation (OR=0.55, CI[0.39–0.75], p < 0.0001) and severe symptoms (OR=0.36, CI[0.27–0.49], p < 0.0001), and higher odds of asymptomatic infection (OR=3.45, CI[2.86–4.16], p < 0.0001), compared to infection following only two vaccination doses. During the Omicron period, infection following three vaccination doses was associated with lower odds of severe symptoms (OR=0.48, CI[0.42–0.55], p < 0.0001). During the Delta period, infected individuals were less likely to report almost all individual symptoms after a third vaccination. During the Omicron period, individuals were less likely to report most symptoms after a third vaccination, except for upper respiratory symptoms e.g. sneezing (OR=1.40, CI[1.18–1.35], p < 0.0001), runny nose (OR=1.26, CI[1.18–1.35], p < 0.0001), sore throat (OR=1.17, CI[1.10–1.25], p < 0.0001), and hoarse voice (OR=1.13, CI[1.06–1.21], p < 0.0001), which were more likely to be reported. There was evidence of reduced vaccine effectiveness during both Delta and Omicron periods in those infected more than 3 months after their most recent vaccination, with increased reporting of severe symptoms, long duration illness, and most individual symptoms. INTERPRETATION: This study suggests that a third dose of monovalent vaccine may reduce symptoms, severity and duration of SARS-CoV-2 infection following vaccination. For Omicron variants, the third vaccination appears to reduce overall symptom burden but may increase upper respiratory symptoms, potentially due to immunological priming. There is evidence of waning vaccine effectiveness against progression to symptomatic and severe disease and long COVID after three months. Our findings support ongoing booster vaccination promotion amongst individuals at high risk from COVID-19, to reduce severe symptoms and duration of illness, and health system burden. Disseminating knowledge on expected symptoms following booster vaccination may encourage vaccine uptake

    Disentangling post-vaccination symptoms from early COVID-19

    Get PDF
    Background: Identifying and testing individuals likely to have SARS-CoV-2 is critical for infection control, including post-vaccination. Vaccination is a major public health strategy to reduce SARS-CoV-2 infection globally. Some individuals experience systemic symptoms post-vaccination, which overlap with COVID-19 symptoms. This study compared early post-vaccination symptoms in individuals who subsequently tested positive or negative for SARS-CoV-2, using data from the COVID Symptom Study (CSS) app. Methods: We conducted a prospective observational study in 1,072,313 UK CSS participants who were asymptomatic when vaccinated with Pfizer-BioNTech mRNA vaccine (BNT162b2) or Oxford-AstraZeneca adenovirus-vectored vaccine (ChAdOx1 nCoV-19) between 8 December 2020 and 17 May 2021, who subsequently reported symptoms within seven days (N=362,770) (other than local symptoms at injection site) and were tested for SARS-CoV-2 (N=14,842), aiming to differentiate vaccination side-effects per se from superimposed SARS-CoV-2 infection. The post-vaccination symptoms and SARS-CoV-2 test results were contemporaneously logged by participants. Demographic and clinical information (including comorbidities) were recorded. Symptom profiles in individuals testing positive were compared with a 1:1 matched population testing negative, including using machine learning and multiple models considering UK testing criteria. Findings: Differentiating post-vaccination side-effects alone from early COVID-19 was challenging, with a sensitivity in identification of individuals testing positive of 0.6 at best. Most of these individuals did not have fever, persistent cough, or anosmia/dysosmia, requisite symptoms for accessing UK testing; and many only had systemic symptoms commonly seen post-vaccination in individuals negative for SARS-CoV-2 (headache, myalgia, and fatigue). Interpretation: Post-vaccination symptoms per se cannot be differentiated from COVID-19 with clinical robustness, either using symptom profiles or machine-derived models. Individuals presenting with systemic symptoms post-vaccination should be tested for SARS-CoV-2 or quarantining, to prevent community spread. Funding: UK Government Department of Health and Social Care, Wellcome Trust, UK Engineering and Physical Sciences Research Council, UK National Institute for Health Research, UK Medical Research Council and British Heart Foundation, Chronic Disease Research Foundation, Zoe Limited

    Characteristics of suicide attempters with family history of suicide attempt: a retrospective chart review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Family history of suicide attempt is one of the risks of suicide. We aimed at exploring the characteristics of Japanese suicide attempters with and without a family history of suicide attempt.</p> <p>Methods</p> <p>Suicide attempters admitted to an urban emergency department from 2003 to 2008 were interviewed by two attending psychiatrists on items concerning family history of suicide attempt and other sociodemographic and clinical information. Subjects were divided into two groups based on the presence or absence of a family history of suicide attempt, and differences between the two groups were subsequently analyzed.</p> <p>Results</p> <p>Out of the 469 suicide attempters, 70 (14.9%) had a family history of suicide attempt. A significantly higher rate of suicide motive connected with family relations (odds ratio 2.21, confidence interval 1.18–4.17, <it>p </it>< .05) as well as a significantly higher rate of deliberate self-harm (odds ratio 2.51, confidence interval 1.38–4.57, <it>p </it>< .05) were observed in patients with a family history of suicide compared to those without such history. No significant differences were observed in other items investigated.</p> <p>Conclusion</p> <p>The present study has revealed the characteristics of suicide attempters with a family history of suicide attempt. Further understanding of the situation of such individuals is expected to lead to better treatment provision and outcomes, and family function might be a suitable focus in their treatment.</p

    Profiling post-COVID-19 condition across different variants of SARS-CoV-2: a prospective longitudinal study in unvaccinated wild-type, unvaccinated alpha-variant, and vaccinated delta-variant populations

    Get PDF
    BACKGROUND: Self-reported symptom studies rapidly increased understanding of SARS-CoV-2 during the COVID-19 pandemic and enabled monitoring of long-term effects of COVID-19 outside hospital settings. Post-COVID-19 condition presents as heterogeneous profiles, which need characterisation to enable personalised patient care. We aimed to describe post-COVID-19 condition profiles by viral variant and vaccination status. METHODS: In this prospective longitudinal cohort study, we analysed data from UK-based adults (aged 18–100 years) who regularly provided health reports via the Covid Symptom Study smartphone app between March 24, 2020, and Dec 8, 2021. We included participants who reported feeling physically normal for at least 30 days before testing positive for SARS-CoV-2 who subsequently developed long COVID (ie, symptoms lasting longer than 28 days from the date of the initial positive test). We separately defined post-COVID-19 condition as symptoms that persisted for at least 84 days after the initial positive test. We did unsupervised clustering analysis of time-series data to identify distinct symptom profiles for vaccinated and unvaccinated people with post-COVID-19 condition after infection with the wild-type, alpha (B.1.1.7), or delta (B.1.617.2 and AY.x) variants of SARS-CoV-2. Clusters were then characterised on the basis of symptom prevalence, duration, demography, and previous comorbidities. We also used an additional testing sample with additional data from the Covid Symptom Study Biobank (collected between October, 2020, and April, 2021) to investigate the effects of the identified symptom clusters of post-COVID-19 condition on the lives of affected people. FINDINGS: We included 9804 people from the COVID Symptom Study with long COVID, 1513 (15%) of whom developed post-COVID-19 condition. Sample sizes were sufficient only for analyses of the unvaccinated wild-type, unvaccinated alpha variant, and vaccinated delta variant groups. We identified distinct profiles of symptoms for post-COVID-19 condition within and across variants: four endotypes were identified for infections due to the wild-type variant (in unvaccinated people), seven for the alpha variant (in unvaccinated people), and five for the delta variant (in vaccinated people). Across all variants, we identified a cardiorespiratory cluster of symptoms, a central neurological cluster, and a multi-organ systemic inflammatory cluster. These three main clusers were confirmed in a testing sample. Gastrointestinal symptoms clustered in no more than two specific phenotypes per viral variant. INTERPRETATION: Our unsupervised analysis identified different profiles of post-COVID-19 condition, characterised by differing symptom combinations, durations, and functional outcomes. Our classification could be useful for understanding the distinct mechanisms of post-COVID-19 condition, as well as for identification of subgroups of individuals who might be at risk of prolonged debilitation. FUNDING: UK Government Department of Health and Social Care, Chronic Disease Research Foundation, The Wellcome Trust, UK Engineering and Physical Sciences Research Council, UK Research and Innovation London Medical Imaging & Artificial Intelligence Centre for Value-Based Healthcare, UK National Institute for Health Research, UK Medical Research Council, British Heart Foundation, UK Alzheimer's Society, and ZOE

    Predation efficiency of Anopheles gambiae larvae by aquatic predators in western Kenya highlands

    Get PDF
    Abstract Background The current status of insecticide resistance in mosquitoes and the effects of insecticides on non-target insect species have raised the need for alternative control methods for malaria vectors. Predation has been suggested as one of the important regulation mechanisms for malaria vectors in long-lasting aquatic habitats, but the predation efficiency of the potential predators is largely unknown in the highlands of western Kenya. In the current study, we examined the predation efficiency of five predators on Anopheles gambiae s.s larvae in 24 hour and semi- field evaluations. Methods Predators were collected from natural habitats and starved for 12 hours prior to starting experiments. Preliminary experiments were conducted to ascertain the larval stage most predated by each predator species. When each larval instar was subjected to predation, third instar larvae were predated at the highest rate. Third instar larvae of An. gambiae were introduced into artificial habitats with and without refugia at various larval densities. The numbers of surviving larvae were counted after 24 hours in 24. In semi-field experiments, the larvae were counted daily until they were all either consumed or had developed to the pupal stage. Polymerase chain reaction was used to confirm the presence of An. gambiae DNA in predator guts. Results Experiments found that habitat type (P &lt; 0.0001) and predator species (P &lt; 0.0001) had a significant impact on the predation rate in the 24 hour evaluations. In semi-field experiments, predator species (P &lt; 0.0001) and habitat type (P &lt; 0.0001) were significant factors in both the daily survival and the overall developmental time of larvae. Pupation rates took significantly longer in habitats with refugia. An. gambiae DNA was found in at least three out of ten midguts for all predator species. Gambusia affins was the most efficient, being three times more efficient than tadpoles. Conclusion These experiments provide insight into the efficiency of specific natural predators against mosquito larvae. These naturally occurring predators may be useful in biocontrol strategies for aquatic stage An. gambiae mosquitoes. Further investigations should be done in complex natural habitats for these predators

    Post-vaccination infection rates and modification of COVID-19 symptoms in vaccinated UK school-aged children and adolescents: A prospective longitudinal cohort study

    Get PDF
    Background: We aimed to explore the effectiveness of one-dose BNT162b2 vaccination upon SARS-CoV-2 infection, its effect on COVID-19 presentation, and post-vaccination symptoms in children and adolescents (CA) in the UK during periods of Delta and Omicron variant predominance. / Methods: In this prospective longitudinal cohort study, we analysed data from 115,775 CA aged 12-17 years, proxy-reported through the Covid Symptom Study (CSS) smartphone application. We calculated post-vaccination infection risk after one dose of BNT162b2, and described the illness profile of CA with post-vaccination SARS-CoV-2 infection, compared to unvaccinated CA, and post-vaccination side-effects. / Findings: Between August 5, 2021 and February 14, 2022, 25,971 UK CA aged 12-17 years received one dose of BNT162b2 vaccine. The probability of testing positive for infection diverged soon after vaccination, and was lower in CA with prior SARS-CoV-2 infection. Vaccination reduced proxy-reported infection risk (-80·4% (95% CI -0·82 -0·78) and -53·7% (95% CI -0·62 -0·43) at 14–30 days with Delta and Omicron variants respectively, and -61·5% (95% CI -0·74 -0·44) and -63·7% (95% CI -0·68 -0.59) after 61–90 days). Vaccinated CA who contracted SARS-CoV-2 during the Delta period had milder disease than unvaccinated CA; during the Omicron period this was only evident in children aged 12-15 years. Overall disease profile was similar in both vaccinated and unvaccinated CA. Post-vaccination local side-effects were common, systemic side-effects were uncommon, and both resolved within few days (3 days in most cases). / Interpretation: One dose of BNT162b2 vaccine reduced risk of SARS-CoV-2 infection for at least 90 days in CA aged 12-17 years. Vaccine protection varied for SARS-CoV-2 variant type (lower for Omicron than Delta variant), and was enhanced by pre-vaccination SARS-CoV-2 infection. Severity of COVID-19 presentation after vaccination was generally milder, although unvaccinated CA also had generally mild disease. Overall, vaccination was well-tolerated. / Funding: UK Government Department of Health and Social Care, Chronic Disease Research Foundation, The Wellcome Trust, UK Engineering and Physical Sciences Research Council, UK Research and Innovation London Medical Imaging & Artificial Intelligence Centre for Value Based Healthcare, UK National Institute for Health Research, UK Medical Research Council, British Heart Foundation and Alzheimer's Society, and ZOE Limited

    Compositions of professionalism in counselling work: an embodied intersectionality framework

    Get PDF
    This paper explores the embodied constitution of professionalism in the context of the counselling psychology profession in Russia. We develop an embodied intersectionality framework for theorizing embodied compositions of professionalism, which allows us to explain how multiple embodied categories of difference intersect and are relationally co-constitutive in producing credible professionals, and how these intersections are contingent on intercorporeal encounters that take place in localized professional settings. Our exploration of how professionalism and professional credibility are established in Russian counselling shows that, rather than assuming that a hegemonic ‘ideal body’ is given preference in a professional context, different embodied compositions may be deemed credible in various work settings within the same profession. An embodied intersectionality framework allows us to challenge the notion of a single professional ideal and offer a dynamic and contextually situated analysis of the lived experiences of professional privilege and disadvantage

    Fluids and barriers of the CNS establish immune privilege by confining immune surveillance to a two-walled castle moat surrounding the CNS castle

    Get PDF
    Neuronal activity within the central nervous system (CNS) strictly depends on homeostasis and therefore does not tolerate uncontrolled entry of blood components. It has been generally believed that under normal conditions, the endothelial blood-brain barrier (BBB) and the epithelial blood-cerebrospinal fluid barrier (BCSFB) prevent immune cell entry into the CNS. This view has recently changed when it was realized that activated T cells are able to breach the BBB and the BCSFB to perform immune surveillance of the CNS. Here we propose that the immune privilege of the CNS is established by the specific morphological architecture of its borders resembling that of a medieval castle. The BBB and the BCSFB serve as the outer walls of the castle, which can be breached by activated immune cells serving as messengers for outside dangers. Having crossed the BBB or the BCSFB they reach the castle moat, namely the cerebrospinal fluid (CSF)-drained leptomeningeal and perivascular spaces of the CNS. Next to the CNS parenchyma, the castle moat is bordered by a second wall, the glia limitans, composed of astrocytic foot processes and a parenchymal basement membrane. Inside the castle, that is the CNS parenchyma proper, the royal family of sensitive neurons resides with their servants, the glial cells. Within the CSF-drained castle moat, macrophages serve as guards collecting all the information from within the castle, which they can present to the immune-surveying T cells. If in their communication with the castle moat macrophages, T cells recognize their specific antigen and see that the royal family is in danger, they will become activated and by opening doors in the outer wall of the castle allow the entry of additional immune cells into the castle moat. From there, immune cells may breach the inner castle wall with the aim to defend the castle inhabitants by eliminating the invading enemy. If the immune response by unknown mechanisms turns against self, that is the castle inhabitants, this may allow for continuous entry of immune cells into the castle and lead to the death of the castle inhabitants, and finally members of the royal family, the neurons. This review will summarize the molecular traffic signals known to allow immune cells to breach the outer and inner walls of the CNS castle moat and will highlight the importance of the CSF-drained castle moat in maintaining immune surveillance and in mounting immune responses in the CNS
    corecore