397 research outputs found

    Founder effects facilitate the use of a genotyping-based approach to molecular diagnosis in Swedish patients with familial hypercholesterolaemia

    Get PDF
    Aim To investigate whether genotyping could be used as a cost-effective screening step, preceding next-generation sequencing (NGS), in molecular diagnosis of familial hypercholesterolaemia (FH) in Swedish patients. Methods and results Three hundred patients of Swedish origin with clinical suspicion of heterozygous FH were analysed using a specific array genotyping panel embedding 112 FH-causing mutations in the LDLR, APOB and PCSK9 genes. The mutations had been selected from previous reports on FH patients in Scandinavia and Finland. Mutation-negative cases were further analysed by NGS. In 181 patients with probable or definite FH using the Dutch lipid clinics network (DLCN) criteria (score >= 6), a causative mutation was identified in 116 (64%). Of these, 94 (81%) were detected by genotyping. Ten mutations accounted for more than 50% of the positive cases, with APOB c.10580G>A being the most common. Mutations in LDLR predominated, with (c.2311+1_2312-1)(2514)del (FH Helsinki) and c.259T>G having the highest frequency. Two novel LDLR mutations were identified. In patients with DLCN score A was higher than previously reported in Sweden. The lack of demonstrable mutations in the LDLR, APOB and PCSK9 genes in similar to 1/3 of patients with probable FH strongly suggests that additional genetic mechanisms are to be found in phenotypic FH.Peer reviewe

    Vancomycin-induced deletion of the methicillin resistance gene mecA in Staphylococcus aureus

    Get PDF
    Objective: To elucidate factors that contribute to the development of vancomycin resistance in methicillin-resistant Staphylococcus aureus (MRSA). Methods: Forty-nine MRSA isolates were subjected to passage selection with vancomycin to isolate mutants with reduced susceptibility to vancomycin. One mutant was chosen for detailed molecular and biochemical characterization. Results: Five vancomycin-resistant mutants (vancomycin MICs, 6-12 mg/L) were obtained in vitro from five MRSA parent isolates. Upon acquisition of vancomycin resistance, all mutants showed a concomitant decrease in oxacillin resistance. In one particular MRSA strain, selection for vancomycin resistance repeatedly produced deletions and rearrangements, including loss of the mecA gene. Pleiotropic phenotypical changes, such as yellow pigment formation, loss of haemolysis, thickened cell wall, increased resistance to lysostaphin and reduced cell wall turnover were observed in this mutant. Conclusion: Acquisition of vancomycin resistance in one MRSA strain triggered mecA deletion suggesting that this deletion, coupled to other rearrangements and/or mutations, may be responsible for the increased vancomycin resistance phenotyp

    Haplotype analysis in Icelandic and Finnish BRCA2 999del5 breast cancer families

    Get PDF
    To access publisher full text version of this article. Please click on the hyperlink in Additional Links fieldThe 999del5 mutation is the single, strong BRCA2 founder mutation in Iceland and the most common BRCA1/2 founder mutation in Finland. To evaluate the origin and time since spreading of the 999del5 mutation in Iceland and in Finland, we constructed haplotypes with polymorphic markers within and flanking the BRCA2 gene in a set of 18 Icelandic and 10 Finnish 999del5 breast cancer families. All Icelandic families analysed shared a common core haplotype of about 1.7 cM. The common ancestors for the Icelandic families studied were estimated to trace back to 340-1000 years, not excluding the possibility that the mutation was brought to Iceland during the settlement of the country. Analysis of the Finnish families revealed two distinct haplotypes. A rare one, found in three families in the old settlement region in southwestern Finland, shared a four-marker (0.5 cM) core haplotype with the Icelandic 999del5 haplotype. A distinct approximately 6 cM haplotype was shared by seven 999del5 Finnish families estimated to have a common ancestry 140-300 years ago. These families cluster in two geographical regions in Finland, in the very same area as those with the rare haplotype and also in the most eastern, late settlement region of Finland. The results may indicate a common ancient origin for the 999del5 mutation in Iceland and in Finland, but distinct mutational events cannot be ruled out. The surprising finding of the same mutation in two completely different haplotypes in a sparsely populated area in Finland may suggest gene conversion

    Multi-omic studies on missense PLG variants in families with otitis media

    Get PDF
    Otitis media (OM), a very common disease in young children, can result in hearing loss. In order to potentially replicate previously reported associations between OM and PLG, exome and Sanger sequencing, RNA-sequencing of saliva and middle ear samples, 16S rRNA sequencing, molecular modeling, and statistical analyses including transmission disequilibrium tests (TDT) were performed in a multi-ethnic cohort of 718 families and simplex cases with OM. We identified four rare PLG variants c.112A > G (p.Lys38Glu), c.782G > A (p.Arg261His), c.1481C > T (p.Ala494Val) and c.2045 T > A (p.Ile682Asn), and one common variant c.1414G > A (p.Asp472Asn). However TDT analyses for these PLG variants did not demonstrate association with OM in 314 families. Additionally PLG expression is very low or absent in normal or diseased middle ear in mouse and human, and salivary expression and microbial a-diversity were non-significant in c.1414G > A (p.Asp472Asn) carriers. Based on molecular modeling, the novel rare variants particularly c.782G > A (p.Arg261His) and c.2045 T > A (p.Ile682Asn) were predicted to affect protein structure. Exploration of other potential disease mechanisms will help elucidate how PLG contributes to OM susceptibility in humans. Our results underline the importance of following up findings from genome-wide association through replication studies, preferably using multi-omic datasets.Peer reviewe

    Interactions between Glutathione S-Transferase P1, Tumor Necrosis Factor, and Traffic-Related Air Pollution for Development of Childhood Allergic Disease

    Get PDF
    BACKGROUND: Air pollutants may induce airway inflammation and sensitization due to generation of reactive oxygen species. The genetic background to these mechanisms could be important effect modifiers. OBJECTIVE: Our goal was to assess interactions between exposure to air pollution and single nucleotide polymorphisms (SNPs) in the beta2-adrenergic receptor (ADRB2), glutathione S-transferase P1 (GSTP1), and tumor necrosis factor (TNF) genes for development of childhood allergic disease. METHODS: In a birth cohort originally of 4,089 children, we assessed air pollution from local traffic using nitrogen oxides (traffic NO(x)) as an indicator based on emission databases and dispersion modeling and estimated individual exposure through geocoding of home addresses. We measured peak expiratory flow rates and specific IgE for inhalant and food allergens at 4 years of age, and selected children with asthma symptoms up to 4 years of age (n = 542) and controls (n = 542) for genotyping. RESULTS: Interaction effects on allergic sensitization were indicated between several GSTP1 SNPs and traffic NO(x) exposure during the first year of life (p(nominal) < 0.001-0.06). Children with Ile105Val/Val105Val genotypes were at increased risk of sensitization to any allergen when exposed to elevated levels of traffic NO(x) (for a difference between the 5th and 95th percentile of exposure: odds ratio = 2.4; 95% confidence interval, 1.0-5.3). In children with TNF-308 GA/AA genotypes, the GSTP1-NO(x) interaction effect was even more pronounced. We observed no conclusive interaction effects for ADRB2. CONCLUSION: The effect of air pollution from traffic on childhood allergy appears to be modified by GSTP1 and TNF variants, supporting a role of genes controlling the antioxidative system and inflammatory response in allergy
    corecore