6 research outputs found

    Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine

    Get PDF
    Orally administrable drug delivery vehicles are developed to manage incurable inflammatory bowel disease (IBD), however, their therapeutic outcomes are compromised by the side effects of systemic drug exposure. Herein, we use hyaluronic acid functionalized porous silicon nanoparticle to bridge enzyme-responsive hydrogel and pH-responsive polymer, generating a hierarchical structured (nano-in-nano-in-micro) vehicle with programmed properties to fully and sequentially overcome the multiple obstacles for efficiently delivering drugs locally to inflamed sites of intestine. After oral administration, the pH-responsive matrix protects the embedded hybrid nanoparticles containing drug loaded hydrogels against the spatially variable physiological environments of the gastrointestinal tract until they reach the inflamed sites of intestine, preventing premature drug release. The negatively charged hybrid nanoparticles selectively target the inflamed sites of intestine, and gradually release drug in response to the microenvironment of inflamed intestine. Overall, the developed hierarchical structured and programmed vehicles load, protect, transport and release drugs locally to inflamed sites of intestine, contributing to superior therapeutic outcomes. Such strategy could also inspire the development of numerous hierarchical structured vehicles by other porous nanoparticles and stimuli-responsive materials for the local delivery of various drugs to treat plenty of inflammatory gastrointestinal diseases, including IBD, gastrointestinal cancers and viral infections.Peer reviewe

    Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine

    Get PDF
    Orally administrable drug delivery vehicles are developed to manage incurable inflammatory bowel disease (IBD), however, their therapeutic outcomes are compromised by the side effects of systemic drug exposure. Herein, we use hyaluronic acid functionalized porous silicon nanoparticle to bridge enzyme-responsive hydrogel and pH-responsive polymer, generating a hierarchical structured (nano-in-nano-in-micro) vehicle with programmed properties to fully and sequentially overcome the multiple obstacles for efficiently delivering drugs locally to inflamed sites of intestine. After oral administration, the pH-responsive matrix protects the embedded hybrid nanoparticles containing drug loaded hydrogels against the spatially variable physiological environments of the gastrointestinal tract until they reach the inflamed sites of intestine, preventing premature drug release. The negatively charged hybrid nanoparticles selectively target the inflamed sites of intestine, and gradually release drug in response to the microenvironment of inflamed intestine. Overall, the developed hierarchical structured and programmed vehicles load, protect, transport and release drugs locally to inflamed sites of intestine, contributing to superior therapeutic outcomes. Such strategy could also inspire the development of numerous hierarchical structured vehicles by other porous nanoparticles and stimuli-responsive materials for the local delivery of various drugs to treat plenty of inflammatory gastrointestinal diseases, including IBD, gastrointestinal cancers and viral infections.</p

    Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine

    No full text
    Orally administrable drug delivery vehicles are developed to manage incurable inflammatory bowel disease (IBD), however, their therapeutic outcomes are compromised by the side effects of systemic drug exposure. Herein, we use hyaluronic acid functionalized porous silicon nanoparticle to bridge enzyme-responsive hydrogel and pH-responsive polymer, generating a hierarchical structured (nano-in-nano-in-micro) vehicle with programmed properties to fully and sequentially overcome the multiple obstacles for efficiently delivering drugs locally to inflamed sites of intestine. After oral administration, the pH-responsive matrix protects the embedded hybrid nanoparticles containing drug loaded hydrogels against the spatially variable physiological environments of the gastrointestinal tract until they reach the inflamed sites of intestine, preventing premature drug release. The negatively charged hybrid nanoparticles selectively target the inflamed sites of intestine, and gradually release drug in response to the microenvironment of inflamed intestine. Overall, the developed hierarchical structured and programmed vehicles load, protect, transport and release drugs locally to inflamed sites of intestine, contributing to superior therapeutic outcomes. Such strategy could also inspire the development of numerous hierarchical structured vehicles by other porous nanoparticles and stimuli-responsive materials for the local delivery of various drugs to treat plenty of inflammatory gastrointestinal diseases, including IBD, gastrointestinal cancers and viral infections.W.L. acknowledges the Orion Research Foundation for financial support. Z.L. acknowledges the Chinese Scholarship Council for financial support. T.B.-R. acknowledges financial support from the Fundação para a Ciência e a Tecnologia (grant no. SFRH/BD/110859/2015 ). H.Z. acknowledges Jane and Aatos Erkko Foundation (grant no. 4704010 ), Academic of Finland (grant no. 297580 ) and Sigrid Jusélius Foundation (grant no. 28001830K1 ) for financial support. D.L. acknowledges the Jane and Aatos Erkko Foundation for financial support. X.D. acknowledges financial support from the National Key R&D Program (Grant Nos. 2017YFA0504504 and 2016YFA0502001 ), the National Natural Science Foundation of China (Grant Nos. U1405223 and 81661138005 ), the Fundamental Research Funds for the Central Universities of China (Grant No. 20720160064 ), and the Program of Introducing Talents of Discipline to Universities (111 Project, B12001 ). H.A.S. acknowledges financial support from the Sigrid Jusélius Foundation (Decision No. 4704580 ), the European Research Council under the European Union's Seventh Framework Programme ( FP/2007-2013 , Grant No. 310892 ) and the HiLIFE Research Funds
    corecore