64 research outputs found

    Obsessive-compulsive disorder and the DST

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/25954/1/0000020.pd

    Factors Likely to Affect the Uptake of Genomic Approaches to Cancer Screening in Primary Care: A Scoping Review

    Get PDF
    Genomic tests are being developed for use in cancer screening. As most screening is offered in primary care settings, primary care provider and patient perceptions of such tests are likely to affect uptake. We conducted a scoping review to synthesize information on factors likely to affect patient and provider use of biospecimen collection and analysis for cancer screening, methods referred to as liquid biopsy or multi-cancer early detection (MCED) testing when used to detect multiple cancers. We ultimately identified 7 articles for review and analyzed them for major themes. None reported on primary care provider perspectives. Six articles focused on patient perceptions about testing for a single cancer (colorectal), and 1 reported on patient views related to testing for multiple cancers. Factors favoring this type of testing included its non-invasiveness, and the perceived safety, convenience, and effectiveness of testing. There is a dearth of information in the literature on primary care provider perceptions about liquid biopsy and MCED testing. The limited information on patient perceptions suggests that they are receptive to such tests. Research on primary care provider and patient test-related knowledge, attitudes, and behavior is needed to guide future implementation in primary care settings

    Long-lived explosive volcanism on Mercury

    Get PDF
    The duration and timing of volcanic activity on Mercury are key indicators of the thermal evolution of the planet and provide a valuable comparative example for other terrestrial bodies. The majority of effusive volcanism on Mercury appears to have occurred early in the planet's geological history (~4.1–3.55 Ga), but there is also evidence for explosive volcanism. Here we present evidence that explosive volcanism occurred from at least 3.9 Ga until less than a billion years ago and so was substantially more long-lived than large-scale lava plains formation. This indicates that thermal conditions within Mercury have allowed partial melting of silicates through the majority of its geological history and that the overall duration of volcanism on Mercury is similar to that of the Moon despite the different physical structure, geological history, and composition of the two bodies

    Space Science Opportunities Augmented by Exploration Telepresence

    Get PDF
    Since the end of the Apollo missions to the lunar surface in December 1972, humanity has exclusively conducted scientific studies on distant planetary surfaces using teleprogrammed robots. Operations and science return for all of these missions are constrained by two issues related to the great distances between terrestrial scientists and their exploration targets: high communication latencies and limited data bandwidth. Despite the proven successes of in-situ science being conducted using teleprogrammed robotic assets such as Spirit, Opportunity, and Curiosity rovers on the surface of Mars, future planetary field research may substantially overcome latency and bandwidth constraints by employing a variety of alternative strategies that could involve: 1) placing scientists/astronauts directly on planetary surfaces, as was done in the Apollo era; 2) developing fully autonomous robotic systems capable of conducting in-situ field science research; or 3) teleoperation of robotic assets by humans sufficiently proximal to the exploration targets to drastically reduce latencies and significantly increase bandwidth, thereby achieving effective human telepresence. This third strategy has been the focus of experts in telerobotics, telepresence, planetary science, and human spaceflight during two workshops held from October 3–7, 2016, and July 7–13, 2017, at the Keck Institute for Space Studies (KISS). Based on findings from these workshops, this document describes the conceptual and practical foundations of low-latency telepresence (LLT), opportunities for using derivative approaches for scientific exploration of planetary surfaces, and circumstances under which employing telepresence would be especially productive for planetary science. An important finding of these workshops is the conclusion that there has been limited study of the advantages of planetary science via LLT. A major recommendation from these workshops is that space agencies such as NASA should substantially increase science return with greater investments in this promising strategy for human conduct at distant exploration sites

    Space Science Opportunities Augmented by Exploration Telepresence

    Get PDF
    Since the end of the Apollo missions to the lunar surface in December 1972, humanity has exclusively conducted scientific studies on distant planetary surfaces using teleprogrammed robots. Operations and science return for all of these missions are constrained by two issues related to the great distances between terrestrial scientists and their exploration targets: high communication latencies and limited data bandwidth. Despite the proven successes of in-situ science being conducted using teleprogrammed robotic assets such as Spirit, Opportunity, and Curiosity rovers on the surface of Mars, future planetary field research may substantially overcome latency and bandwidth constraints by employing a variety of alternative strategies that could involve: 1) placing scientists/astronauts directly on planetary surfaces, as was done in the Apollo era; 2) developing fully autonomous robotic systems capable of conducting in-situ field science research; or 3) teleoperation of robotic assets by humans sufficiently proximal to the exploration targets to drastically reduce latencies and significantly increase bandwidth, thereby achieving effective human telepresence. This third strategy has been the focus of experts in telerobotics, telepresence, planetary science, and human spaceflight during two workshops held from October 3–7, 2016, and July 7–13, 2017, at the Keck Institute for Space Studies (KISS). Based on findings from these workshops, this document describes the conceptual and practical foundations of low-latency telepresence (LLT), opportunities for using derivative approaches for scientific exploration of planetary surfaces, and circumstances under which employing telepresence would be especially productive for planetary science. An important finding of these workshops is the conclusion that there has been limited study of the advantages of planetary science via LLT. A major recommendation from these workshops is that space agencies such as NASA should substantially increase science return with greater investments in this promising strategy for human conduct at distant exploration sites

    The VMC survey - XLIII. The spatially resolved star formation history across the Large Magellanic Cloud

    Get PDF
    We derive the spatially resolved star formation history (SFH) for a 96 deg2 area across the main body of the Large Magellanic Cloud (LMC), using the near-infrared photometry from the VISTA survey of the Magellanic Clouds (VMC). The data and analyses are characterized by a great degree of homogeneity and a low sensitivity to the interstellar extinction. 756 subregions of size 0.125 deg2 – corresponding to projected sizes of about 296×322pc2 in the LMC – are analysed. The resulting SFH maps, with typical resolution of 0.2–0.3 dex in logarithm of age, reveal main features in the LMC disc at different ages: the patchy star formation at recent ages, the concentration of star formation on three spiral arms and on the Bar up to ages of ~1.6 Gyr, and the wider and smoother distribution of older populations. The period of most intense star formation occurred roughly between 4 and 0.5 Gyr ago, at rates of ~0.3M?yr-1?. We compare young and old star formation rates with the observed numbers of RR Lyrae and Cepheids. We also derive a mean extinction and mean distance for every subregion, and the plane that best describes the spatial distribution of the mean distances. Our results cover an area about 50 per?cent larger than the classical SFH maps derived from optical data. Main differences with respect to those maps are lower star formation rates at young ages, and a main peak of star formation being identified at ages slightly younger than 1 Gyr

    Assessing the Effects of Responsible Leadership and Ethical Conflict on Behavioral Intention

    Get PDF
    [[abstract]]This study develops a research model that elaborates how responsible leadership and ethical conflict influence employees from the perspectives of role theory and attachment theory. Its empirical results reveal that turnover intention indirectly relates to ethical conflict and responsible leadership via the mediating mechanisms of organizational identification and organizational uncertainty. At the same time, helping intention indirectly relates to ethical conflict and responsible leadership only through organizational identification. Finally, the managerial implications for international business and research limitations based on the empirical results are discussed.[[notice]]補正完
    corecore