7 research outputs found

    PaLI: A Jointly-Scaled Multilingual Language-Image Model

    Full text link
    Effective scaling and a flexible task interface enable large language models to excel at many tasks. PaLI (Pathways Language and Image model) extends this approach to the joint modeling of language and vision. PaLI generates text based on visual and textual inputs, and with this interface performs many vision, language, and multimodal tasks, in many languages. To train PaLI, we make use of large pretrained encoder-decoder language models and Vision Transformers (ViTs). This allows us to capitalize on their existing capabilities and leverage the substantial cost of training them. We find that joint scaling of the vision and language components is important. Since existing Transformers for language are much larger than their vision counterparts, we train the largest ViT to date (ViT-e) to quantify the benefits from even larger-capacity vision models. To train PaLI, we create a large multilingual mix of pretraining tasks, based on a new image-text training set containing 10B images and texts in over 100 languages. PaLI achieves state-of-the-art in multiple vision and language tasks (such as captioning, visual question-answering, scene-text understanding), while retaining a simple, modular, and scalable design

    The utilization of nanotechnology in the female reproductive system and related disorders

    No full text
    The health of the reproductive system is intricately linked to female fertility and quality of life. There has been a growing prevalence of reproductive system disorders among women, particularly in younger age groups, resulting in significant adverse effects on their reproductive health. Consequently, there is an urgent need for effective treatment modalities. Nanotechnology, as an advanced discipline, provides innovative avenues for managing and treating diseases of the female reproductive system by enabling precise manipulation and regulation of biological molecules and cells. By utilizing nanodelivery systems, drugs can be administered with pinpoint accuracy, leading to reduced side effects and improved therapeutic efficacy. Moreover, nanomaterial imaging techniques enhance diagnostic precision and sensitivity, aiding in the assessment of disease severity and progression. Furthermore, the implementation of nanobiosensors facilitates early detection and prevention of ailments. This comprehensive review aims to summarize recent applications of nanotechnology in the treatment of female reproductive system diseases. The latest advancements in drug delivery, diagnosis, and treatment approaches will be discussed, with an emphasis on the potential of nanotechnology to improve treatment outcomes and overall quality of life

    Facile Microembossing Process for Microchannel Fabrication for Nanocellulose-Paper-Based Microfluidics

    No full text
    Nanofibrillated cellulose paper (nanopaper) has gained growing interest as one promising substrate material for paper-based microfluidics, thanks to its ultrasmooth surface, high optical transparency, uniform nanofiber matrix with nanoscale porosity, and tunable chemical properties. Recently, research on nanopaper-based microfluidics has quickly advanced; however, the current technique of patterning microchannels on nanopaper (i.e., 3D printing, spray coating, or manual cutting and sticking), that is fundamental for application development, still has some limitations, such as ease-of-contamination, and more importantly, only enabling millimeter-scale channels. This paper reports a facile process that leverages the simple operations of microembossing with the convenient plastic micro-molds, for the first time, patterning nanopaper microchannels downing to 200 μm, which is 4 times better than the existing methods and is time-saving (<45 mins). We also optimized the patterning parameters and provided one quick look-up table as the guideline for application developments. As proof-of-concept, we first demonstrated two fundamental microfluidic devices on nanopaper, the laminar-mixer and droplet generator, and two functional nanopaper-based analytical devices (NanoPADs) for glucose and Rhodamine B (RhB) sensing based on optical colorimetry and surface-enhanced Raman spectroscopy, respectively. The two NanoPADs showed outstanding performance with low limits of detection (2 mM for glucose and 19fM for RhB), which are 1.25× and 500× fold improvement compared to the previously reported values. This can be attributed to our newly developed highly accurate microchannel patterning process that enables high integration and fine-tunability of the NanoPADs along with the superior optical properties of nanopaper
    corecore