31 research outputs found

    Inherited deletion of 9p22.3-p24.3 and duplication of 18p11.31-p11.32 associated with neurodevelopmental delay: Phenotypic matching of involved genes.

    Get PDF
    We describe a 3.5-year-old Iranian female child and her affected 10-month-old brother with a maternally inherited derivative chromosome 9 [der(9)]. The postnatally detected rearrangement was finely characterized by aCGH analysis, which revealed a 15.056 Mb deletion of 9p22.3-p24.3p22.3 encompassing 14 OMIM morbid genes such as DOCK8, KANK1, DMRT1 and SMARCA2, and a gain of 3.309 Mb on 18p11.31-p11.32 encompassing USP14, THOC1, COLEC12, SMCHD1 and LPIN2. We aligned the genes affected by detected CNVs to clinical and functional phenotypic features using PhenogramViz. In this regard, the patient\u27s phenotype and CNVs data were entered into PhenogramViz. For the 9p deletion CNV, 53 affected genes were identified and 17 of them were matched to 24 HPO terms describing the patient\u27s phenotypes. Also, for CNV of 18p duplication, 22 affected genes were identified and six of them were matched to 13 phenotypes. Moreover, we used DECIPHER for in-depth characterization of involved genes in detected CNVs and also comparison of patient phenotypes with 9p and 18p genomic imbalances. Based on our filtration strategy, in the 9p22.3-p24.3 region, approximately 80 pathogenic/likely pathogenic/uncertain overlapping CNVs were in DECIPHER. The size of these CNVs ranged from 12.01 kb to 18.45 Mb and 52 CNVs were smaller than 1 Mb in size affecting 10 OMIM morbid genes. The 18p11.31-p11.32 region overlapped 19 CNVs in the DECIPHER database with the size ranging from 23.42 kb to 1.82 Mb. These CNVs affect eight haploinsufficient genes

    Significant association of SREBP-2 genetic polymorphisms with avascular necrosis in the Korean population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is known that steroid usage and alcohol abuse are major etiological factors in the development of avascular necrosis (AVN), a bone disease that produces osteonecrosis of the femoral head. The facilitation of fat biosynthesis by steroids and alcohol disrupts the blood supply into the femoral head. <it>SREBP-2 </it>plays a central role in the maintenance of lipid homeostasis through stimulating expression of genes associated with cholesterol biosynthetic pathways. The aim of this study was to examine the association between the polymorphisms of the <it>SREBP-2 </it>gene and AVN susceptibility in the Korean population.</p> <p>Methods</p> <p>Four single nucleotide polymorphisms (SNP) in the <it>SREBP-2 </it>gene, IVS1+8408 T>C (rs2267439), IVS3-342 G>T (rs2269657), IVS11+414 G>A (rs1052717) and IVS12-1667 G>A (rs2267443), were selected from public databases and genotyped in 443 AVN patients and 273 control subjects by using single-based extension (SBE) genotyping.</p> <p>Results</p> <p>The minor allele (C) frequency of rs2267439 showed a significant protective effect on AVN (P = 0.01, OR; 0.75, 95% CI; 0.604–0.935), and the genotype frequencies of this polymorphism were also different from the controls in all alternative analysis models (P range, 0.009–0.03, OR; 0.647–0.744). In contrast, rs1052717 and rs2267443 polymorphisms were significantly associated with AVN risk. Further analysis based on pathological etiology showed that the genotypes of rs2267439, rs1052717 and rs2267443 were also significantly associated with AVN susceptibility in each subgroup.</p> <p>Conclusion</p> <p>This study is the first report to evaluate the association between <it>SREBP-2 </it>gene polymorphisms and the susceptibility of AVN in the Korean population.</p

    HGF-Transgenic MSCs Can Improve the Effects of Tissue Self-Repair in a Rabbit Model of Traumatic Osteonecrosis of the Femoral Head

    Get PDF
    BACKGROUND: Osteonecrosis of the femoral head (ONFH) is generally characterized as an irreversible disease and tends to cause permanent disability. Therefore, understanding the pathogenesis and molecular mechanisms of ONFH and developing effective therapeutic methods is critical for slowing the progress of the disease. METHODOLOGY/PRINCIPAL FINDINGS: In this study, an experimental rabbit model of early stage traumatic ONFH was established, validated, and used for an evaluation of therapy. Computed tomography (CT) and magnetic resonance (MR) imaging confirmed that this model represents clinical Association Research Circulation Osseous (ARCO) phase I or II ONFH, which was also confirmed by the presence of significant tissue damage in osseous tissue and vasculature. Pathological examination detected obvious self-repair of bone tissue up to 2 weeks after trauma, as indicated by revascularization (marked by CD105) and expression of collagen type I (Col I), osteocalcin, and proliferating cell nuclear antigen. Transplantation of hepatocyte growth factor (HGF)-transgenic mesenchymal stem cells (MSCs) 1 week after trauma promoted recovery from ONFH, as evidenced by a reversed pattern of Col I expression compared with animals receiving no therapeutic treatment, as well as increased expression of vascular endothelial growth factor. CONCLUSIONS/SIGNIFICANCE: These results indicate that the transplantation of HGF-transgenic MSCs is a promising method for the treatment for ONFH and suggest that appropriate interference therapy during the tissue self-repair stage contributes to the positive outcomes. This study also provides a model for the further study of the ONFH etiology and therapeutic interventions

    Salvianolic Acid B Prevents Bone Loss in Prednisone-Treated Rats through Stimulation of Osteogenesis and Bone Marrow Angiogenesis

    Get PDF
    Glucocorticoid (GC) induced osteoporosis (GIO) is caused by the long-term use of GC for treatment of autoimmune and inflammatory diseases. The GC related disruption of bone marrow microcirculation and increased adipogenesis contribute to GIO development. However, neither currently available anti-osteoporosis agent is completely addressed to microcirculation and bone marrow adipogenesis. Salvianolic acid B (Sal B) is a polyphenolic compound from a Chinese herbal medicine, Salvia miltiorrhiza Bunge. The aim of this study was to determine the effects of Sal B on osteoblast bone formation, angiogenesis and adipogenesis-associated GIO by performing marrow adipogenesis and microcirculation dilation and bone histomorphometry analyses. (1) In vivo study: Bone loss in GC treated rats was confirmed by significantly decreased BMD, bone strength, cancellous bone mass and architecture, osteoblast distribution, bone formation, marrow microvessel density and diameter along with down-regulation of marrow BMPs expression and increased adipogenesis. Daily treatment with Sal B (40 mg/kg/d) for 12 weeks in GC male rats prevented GC-induced cancellous bone loss and increased adipogenesis while increasing cancellous bone formation rate with improved local microcirculation by capillary dilation. Treatment with Sal B at a higher dose (80 mg/kg/d) not only prevented GC-induced osteopenia, but also increased cancellous bone mass and thickness, associated with increase of marrow BMPs expression, inhibited adipogenesis and further increased microvessel diameters. (2) In vitro study: In concentration from 10−6 mol/L to 10−7 mol/L, Sal B stimulated bone marrow stromal cell (MSC) differentiation to osteoblast and increased osteoblast activities, decreased GC associated adipogenic differentiation by down-regulation of PPARγ mRNA expression, increased Runx2 mRNA expression without osteoblast inducement, and, furthermore, Sal B decreased Dickkopf-1 and increased β-catenin mRNA expression with or without adipocyte inducement in MSC. We conclude that Sal B prevented bone loss in GC-treated rats through stimulation of osteogenesis, bone marrow angiogenesis and inhibition of adipogenesis

    Integration analysis of long non-coding RNA (lncRNA) role in tumorigenesis of colon adenocarcinoma

    No full text
    Background: Colon adenocarcinoma (COAD) is one of the most common gastrointestinal cancers globally. Molecular aberrations of tumor suppressors and/or oncogenes are the main contributors to tumorigenesis. However, the exact underlying mechanisms of COAD pathogenesis are clearly not known yet. In this regard, there is an urgent need to indicate promising potential diagnostic and prognostic biomarkers in COAD patients. Methods: In the current study, level 3 RNA-Seq and miR-Seq data and corresponding clinical data of colon adenocarcinoma (COAD) were retrieved from the TCGA database. The "limma"package in R software was utilized to indicate the differentially expressed genes. For in silico functional analysis, GO and KEGG signaling pathways were conducted. PPI network was constructed based on the STRING online database by Cytoscape 3.7.2. A ceRNA network was also constructed by "GDCRNATools"package in R software. Kaplan-Meier survival analysis (log-rank test) and ROC curve analysis were used to indicate the diagnostic and prognostic values of the biomarkers. Results: The differential expression data demonstrated that 2995 mRNAs, 205 lncRNAs, and 345 miRNAs were differentially expressed in COAD. The GO and KEGG pathway analysis indicated that the differentially expressed mRNAs were primarily enriched in canonical processes in cancer. The PPI network showed that the CDKN2A, CCND1, MYC, E2F, CDK4, BRCA2, CDC25B, and CDKN1A proteins were the critical hubs. In addition, the Kaplan-Meier analysis revealed that 215 mRNAs, 14 lncRNAs, and 39 miRNAs were associated with overall survival time in the patients. Also, the ceRNA network data demonstrated that three lncRNAs including MIR17HG, H19, SNHG1, KCNQ1OT1, MALAT1, GAS5, SNHG20, OR2A1-AS1, and MAGI2-AS3 genes were involved in the development of COAD. Conclusions: Our data suggested several promising lncRNAs in the diagnosis and prognosis of patients with COAD. © 2020 The Author(s)

    Fast sequences MR imaging at the investigation of painful skeletal sites in patients with hip osteonecrosis

    No full text
    Background: Multiple osteonecrotic foci can be clinically silent when located in metaphyses and becomes painful when it affects juxta-articular areas. The purpose of this study was to assess the value of fast MR imaging to depict the underlying pathology in cases with skeletal pain other than the already diagnosed hip osteonecrosis. Methods/design: Between 2008 and 2013, 49 patients with already diagnosed hip osteonecrosis reported symptoms of deep skeletal pain in an anatomical site different from the affected hip joint. All patients after thorough history & clinical examination underwent evaluation with x-rays and a single fat suppressed sequence with MR Imaging applying either T2-w TSE or STIR-TSE at the painful site. False positive and false negative findings were recorded for the conventional x-rays and compared to MRI. Discussion: Forty four (89.8%) patients were positive for osteonecrotic lesions in this study and 76 symptomatic osteonecrosis lesions were revealed at 14 distinct anatomic sites. The agreement between the x-ray findings and the MR imaging regarding osteonecrosis was 46.9%. Plain x-rays showed 43.4% sensitivity, 100% specificity, 100% positive predictive value and 10.4% negative predictive value. Fast MR imaging with fat suppressed sequences is necessary and adequate as a single method for the investigation of painful skeletal sites in patients with already diagnosed hip osteonecrosis. It allows early diagnosis of the potentially debilitating multiple juxta-articular lesions and consequently their prompt management
    corecore