2,235 research outputs found

    Momentum flow in black-hole binaries. I. Post-Newtonian analysis of the inspiral and spin-induced bobbing

    Get PDF
    A brief overview is presented of a new Caltech/Cornell research program that is exploring the nonlinear dynamics of curved spacetime in binary black-hole collisions and mergers, and of an initial project in this program aimed at elucidating the flow of linear momentum in binary black holes (BBHs). The “gauge-dependence” (arbitrariness) in the localization of linear momentum in BBHs is discussed, along with the hope that the qualitative behavior of linear momentum will be gauge-independent. Harmonic coordinates are suggested as a possibly preferred foundation for fixing the gauge associated with linear momentum. For a BBH or other compact binary, the Landau-Lifshitz formalism is used to define the momenta of the binary’s individual bodies in terms of integrals over the bodies’ surfaces or interiors, and define the momentum of the gravitational field (spacetime curvature) outside the bodies as a volume integral over the field’s momentum density. These definitions will be used in subsequent papers that explore the internal nonlinear dynamics of BBHs via numerical relativity. This formalism is then used, in the 1.5 post-Newtonian approximation, to explore momentum flow between a binary’s bodies and its gravitational field during the binary’s orbital inspiral. Special attention is paid to momentum flow and conservation associated with synchronous spin-induced bobbing of the black holes, in the so-called “extreme-kick configuration” (where two identical black holes have their spins lying in their orbital plane and antialigned)

    The diffuse ionized interstellar medium perpendicular to the plane of NGC 891

    Get PDF
    In an attempt to study the structure and the properties of the diffuse ionized interstellar medium perpendicular to the plane of disk galaxies researchers obtained H alpha images and spectra of NGC 891. Perhaps the most remarkable property of the H alpha emission line in NGC 891 is its extension out of the plane of the galaxy: researchers are able to measure the H alpha line out to more than 30 seconds (1.4 kpc) from the midplane. This means that the ionized hydrogen extends at least four times higher than the neutral hydrogen layer. An anomalously large scale-height for the ionized gas of approx. equals 1 kpc is also found in the Milky Way. The echelle spectra show a changing ratio of NII to H alpha. This excludes the possibility that the large scaleheight of the emission is due to scattering of disk emission by dust high above the plane. The z-extent of the H alpha emission is confirmed by the imaging result. The large z-extent of the ionized gas is confined to the inner half of the visible disk. In this inner region the H alpha distribution also shows a filamentary structure of the diffuse ionized medium. These filaments, sticking out of the plane, originate in HII regions in the plane. The H alpha image also shows a large scale asymmetry if the NE and SW parts of the disk are compared. The NE part is more prominent and extended in H alpha. The same asymmetry is also seen in the radio continuum distribution. This correlation between the diffuse ionized medium and the distribution of relativistic electrons is one example of a relation between star formation processes in the disk and the various components of the halo. Thermal filaments or spurs which are related to HII regions are also known in the Galaxy. These filamentary structures perpendicular to the galactic planes may represent the chimneys which result in the supernova dominated model of the Interstellar Medium by Norman and Ikeuchi (1989)

    Self-Consistent Data Analysis of the Proton Structure Function g1 and Extraction of its Moments

    Full text link
    The reanalysis of all available world data on the longitudinal asymmetry A|| is presented. The proton structure function g1 was extracted within a unique framework of data inputs and assumptions. These data allowed for a reliable evaluation of moments of the structure function g1 in the Q2 range from 0.2 up to 30 GeV2. The Q2 evolution of the moments was studied in QCD by means of Operator Product Expansion (OPE).Comment: Proceeding of 3rd International Symposium on the Gerasimov-Drell-Hearn Sum Rule and its extensions, Old Dominion University, Norfolk, Virginia June 2-5, 200

    Higher twist analysis of the proton g_1 structure function

    Get PDF
    We perform a global analysis of all available spin-dependent proton structure function data, covering a large range of Q^2, 1 < Q^2 < 30 GeV^2, and calculate the lowest moment of the g_1 structure function as a function of Q^2. From the Q^2 dependence of the lowest moment we extract matrix elements of twist-4 operators, and determine the color electric and magnetic polarizabilities of the proton to be \chi_E = 0.026 +- 0.015 (stat) + 0.021/-0.024 (sys) and \chi_B = -0.013 -+ 0.007 (stat) - 0.010/+0.012 (sys), respectively.Comment: 6 pages, 2 figures, to appear in Phys. Lett.

    Differences in telomere length between sporadic and familial cutaneous melanoma

    Get PDF
    BACKGROUND: Several pieces of evidence indicate that a complex relationship exists between constitutional telomere length (TL) and the risk of cutaneous melanoma. Although the general perception is that longer telomeres increase melanoma risk, some studies do not support this association. We hypothesise that discordant data are due to the characteristics of the studied populations. OBJECTIVES: To evaluate the association of telomere length with familial and sporadic melanoma. METHODS: TL was measured by multiplex quantitative PCR in leukocytes from 310 melanoma patients according to familial/sporadic and single/multiple cancers and 216 age-matched controls. RESULTS: Patients with sporadic melanoma were found to have shorter telomeres as compared to those with familial melanoma. In addition, shorter telomeres, while tending to reduce the risk of familial melanoma regardless of single or multiple tumors, nearly trebled the risk of single sporadic melanoma. CONCLUSIONS: This is the first time that TL has been correlated to opposite effects on melanoma risk according to the presence or absence of familial predisposition. Individual susceptibility to melanoma should be taken into account when assessing the role of TL as a risk factor. This article is protected by copyright. All rights reserved

    Q^2 Evolution of Generalized Baldin Sum Rule for the Proton

    Full text link
    The generalized Baldin sum rule for virtual photon scattering, the unpolarized analogy of the generalized Gerasimov-Drell-Hearn integral, provides an important way to investigate the transition between perturbative QCD and hadronic descriptions of nucleon structure. This sum rule requires integration of the nucleon structure function F_1, which until recently had not been measured at low Q^2 and large x, i.e. in the nucleon resonance region. This work uses new data from inclusive electron-proton scattering in the resonance region obtained at Jefferson Lab, in combination with SLAC deep inelastic scattering data, to present first precision measurements of the generalized Baldin integral for the proton in the Q^2 range of 0.3 to 4.0 GeV^2.Comment: 4 pages, 3 figures, one table; text added, one figure replace

    The impact of new neutrino DIS and Drell-Yan data on large-x parton distributions

    Get PDF
    New data sets have recently become available for neutrino and antineutrino deep inelastic scattering on nuclear targets and for inclusive dimuon production in pp pd interactions. These data sets are sensitive to different combinations of parton distribution functions in the large-x region and, therefore, provide different constraints when incorporated into global parton distribution function fits. We compare and contrast the effects of these new data on parton distribution fits, with special emphasis on the effects at large x. The effects of the use of nuclear targets in the neutrino and antineutrino data sets are also investigated.Comment: 24 pages, 13 figure

    Electron- and neutrino-nucleus scattering in the impulse approximation regime

    Get PDF
    A quantitative understanding of the weak nuclear response is a prerequisite for the analyses of neutrino experiments such as K2K and MiniBOONE, which measure energy and angle of the muons produced in neutrino-nucleus interactions in the energy range 0.5−30.5-3 GeV and reconstruct the incident neutrino energy to determine neutrino oscillations. In this paper we discuss theoretical calculations of electron- and neutrino-nucleus scattering, carried out within the impulse approximation scheme using realistic nuclear spectral functions.Comparison between electron scattering data and the calculated inclusive cross section off oxygen, at beam energies ranging between 700 and 1200 MeV, show that the Fermi gas model, widely used in the analysis of neutrino oscillation experiments,fails to provide a satisfactory description of the measured cross sections,and inclusion of nuclear dynamics is needed.Comment: 12 pages, 15 figure
    • 

    corecore