1,696 research outputs found

    Towards Rapid Parameter Estimation on Gravitational Waves from Compact Binaries using Interpolated Waveforms

    Full text link
    Accurate parameter estimation of gravitational waves from coalescing compact binary sources is a key requirement for gravitational-wave astronomy. Evaluating the posterior probability density function of the binary's parameters (component masses, sky location, distance, etc.) requires computing millions of waveforms. The computational expense of parameter estimation is dominated by waveform generation and scales linearly with the waveform computational cost. Previous work showed that gravitational waveforms from non-spinning compact binary sources are amenable to a truncated singular value decomposition, which allows them to be reconstructed via interpolation at fixed computational cost. However, the accuracy requirement for parameter estimation is typically higher than for searches, so it is crucial to ascertain that interpolation does not lead to significant errors. Here we provide a proof of principle to show that interpolated waveforms can be used to recover posterior probability density functions with negligible loss in accuracy with respect to non-interpolated waveforms. This technique has the potential to significantly increase the efficiency of parameter estimation.Comment: 7 pages, 2 figure

    Higher twist analysis of the proton g_1 structure function

    Get PDF
    We perform a global analysis of all available spin-dependent proton structure function data, covering a large range of Q^2, 1 < Q^2 < 30 GeV^2, and calculate the lowest moment of the g_1 structure function as a function of Q^2. From the Q^2 dependence of the lowest moment we extract matrix elements of twist-4 operators, and determine the color electric and magnetic polarizabilities of the proton to be \chi_E = 0.026 +- 0.015 (stat) + 0.021/-0.024 (sys) and \chi_B = -0.013 -+ 0.007 (stat) - 0.010/+0.012 (sys), respectively.Comment: 6 pages, 2 figures, to appear in Phys. Lett.

    Self-Consistent Data Analysis of the Proton Structure Function g1 and Extraction of its Moments

    Full text link
    The reanalysis of all available world data on the longitudinal asymmetry A|| is presented. The proton structure function g1 was extracted within a unique framework of data inputs and assumptions. These data allowed for a reliable evaluation of moments of the structure function g1 in the Q2 range from 0.2 up to 30 GeV2. The Q2 evolution of the moments was studied in QCD by means of Operator Product Expansion (OPE).Comment: Proceeding of 3rd International Symposium on the Gerasimov-Drell-Hearn Sum Rule and its extensions, Old Dominion University, Norfolk, Virginia June 2-5, 200

    Q^2 Evolution of Generalized Baldin Sum Rule for the Proton

    Full text link
    The generalized Baldin sum rule for virtual photon scattering, the unpolarized analogy of the generalized Gerasimov-Drell-Hearn integral, provides an important way to investigate the transition between perturbative QCD and hadronic descriptions of nucleon structure. This sum rule requires integration of the nucleon structure function F_1, which until recently had not been measured at low Q^2 and large x, i.e. in the nucleon resonance region. This work uses new data from inclusive electron-proton scattering in the resonance region obtained at Jefferson Lab, in combination with SLAC deep inelastic scattering data, to present first precision measurements of the generalized Baldin integral for the proton in the Q^2 range of 0.3 to 4.0 GeV^2.Comment: 4 pages, 3 figures, one table; text added, one figure replace

    The impact of new neutrino DIS and Drell-Yan data on large-x parton distributions

    Get PDF
    New data sets have recently become available for neutrino and antineutrino deep inelastic scattering on nuclear targets and for inclusive dimuon production in pp pd interactions. These data sets are sensitive to different combinations of parton distribution functions in the large-x region and, therefore, provide different constraints when incorporated into global parton distribution function fits. We compare and contrast the effects of these new data on parton distribution fits, with special emphasis on the effects at large x. The effects of the use of nuclear targets in the neutrino and antineutrino data sets are also investigated.Comment: 24 pages, 13 figure

    New parton distributions from large-x and low-Q^2 data

    Full text link
    We report results of a new global next-to-leading order fit of parton distribution functions in which cuts on W and Q are relaxed, thereby including more data at high values of x. Effects of target mass corrections (TMCs), higher twist contributions, and nuclear corrections for deuterium data are significant in the large-x region. The leading twist parton distributions are found to be stable to TMC model variations as long as higher twist contributions are also included. The behavior of the d quark as x-->1 is particularly sensitive to the deuterium corrections, and using realistic nuclear smearing models the d-quark distribution at large x is found to be softer than in previous fits performed with more restrictive cuts.Comment: 31 pages, 8 figures. Minor corrections. References added. To appear in Phys.Rev.
    • …
    corecore