18 research outputs found

    Molecular Origin of Blood-Based Infrared Spectroscopic Fingerprints**

    Get PDF
    Infrared spectroscopy of liquid biopsies is a time- and cost-effective approach that may advance biomedical diagnostics. However, the molecular nature of disease-related changes of infrared molecular fingerprints (IMFs) remains poorly understood, impeding the method's applicability. Here we probe 148 human blood sera and reveal the origin of the variations in their IMFs. To that end, we supplemented infrared spectroscopy with biochemical fractionation and proteomic profiling, providing molecular information about serum composition. Using lung cancer as an example of a medical condition, we demonstrate that the disease-related differences in IMFs are dominated by contributions from twelve highly abundant proteins-that, if used as a pattern, may be instrumental for detecting malignancy. Tying proteomic to spectral information and machine learning advances our understanding of the infrared spectra of liquid biopsies, a framework that could be applied to probing of any disease.** A previous version of this manuscript has been deposited on a preprint server (http://arxiv.org/abs/2102.00765)

    Infrared molecular fingerprinting of blood-based liquid biopsies for the detection of cancer

    Get PDF
    Recent omics analyses of human biofluids provide opportunities to probe selected species of biomolecules for disease diagnostics. Fourier-transform infrared (FTIR) spectroscopy investigates the full repertoire of molecular species within a sample at once. Here, we present a multi-institutional study in which we analysed infrared fingerprints of plasma and serum samples from 1639 individuals with different solid tumours and carefully matched symptomatic and non-symptomatic reference individuals. Focusing on breast, bladder, prostate, and lung cancer, we find that infrared molecular fingerprinting is capable of detecting cancer: training a support vector machine algorithm allowed us to obtain binary classification performance in the range of 0.78–0.89 (area under the receiver operating characteristic curve [AUC]), with a clear correlation between AUC and tumour load. Intriguingly, we find that the spectral signatures differ between different cancer types. This study lays the foundation for high-throughput onco-IR-phenotyping of four common cancers, providing a cost-effective, complementary analytical tool for disease recognition

    Breast-cancer detection using blood-based infrared molecular fingerprints

    Get PDF
    BACKGROUND Breast cancer screening is currently predominantly based on mammography, tainted with the occurrence of both false positivity and false negativity, urging for innovative strategies, as effective detection of early-stage breast cancer bears the potential to reduce mortality. Here we report the results of a prospective pilot study on breast cancer detection using blood plasma analyzed by Fourier-transform infrared (FTIR) spectroscopy - a rapid, cost-effective technique with minimal sample volume requirements and potential to aid biomedical diagnostics. FTIR has the capacity to probe health phenotypes via the investigation of the full repertoire of molecular species within a sample at once, within a single measurement in a high-throughput manner. In this study, we take advantage of cross-molecular fingerprinting to probe for breast cancer detection. METHODS We compare two groups: 26 patients diagnosed with breast cancer to a same-sized group of age-matched healthy, asymptomatic female participants. Training with support-vector machines (SVM), we derive classification models that we test in a repeated 10-fold cross-validation over 10 times. In addition, we investigate spectral information responsible for BC identification using statistical significance testing. RESULTS Our models to detect breast cancer achieve an average overall performance of 0.79 in terms of area under the curve (AUC) of the receiver operating characteristic (ROC). In addition, we uncover a relationship between the effect size of the measured infrared fingerprints and the tumor progression. CONCLUSION This pilot study provides the foundation for further extending and evaluating blood-based infrared probing approach as a possible cross-molecular fingerprinting modality to tackle breast cancer detection and thus possibly contribute to the future of cancer screening

    Strong mechanical driving of a single electron spin

    Get PDF
    Quantum devices for sensing and computing applications require coherent quantum systems which can be manipulated in a fast and robust way. Such quantum control is typically achieved using external electric or magnetic fields which drive the system's orbital or spin degrees of freedom. However, most of these approaches require complex and unwieldy antenna or gate structures, and with few exceptions are limited to the regime of weak driving. Here, we present a novel approach to strongly and coherently drive a single electron spin in the solid state using internal strain fields in an integrated quantum device. Specifically, we study individual Nitrogen-Vacancy (NV) spins embedded in diamond mechanical oscillators and exploit the intrinsic strain coupling between spin and oscillator to strongly drive the spins. As hallmarks of the strong driving regime, we directly observe the energy spectrum of the emerging phonon-dressed states and employ our strong, continuous driving for enhancement of the NV spin coherence time. Our results constitute a first step towards strain-driven, integrated quantum devices and open new perspectives to investigate unexplored regimes of strongly driven multi-level systems and to study exotic spin dynamics in hybrid spin-oscillator devices.We gratefully acknowledge financial support from SNI; NCCR QSIT; SNF grants 200021_143697; and EU FP7 grant 611143 (DIADEMS). AN holds a University Research Fellowship from the Royal Society and acknowledges support from the Winton Programme for the Physics of Sustainability.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nphys341
    corecore