187 research outputs found
Recommended from our members
Locally Controlled Sensing Properties of Stretchable Pressure Sensors Enabled by Micro-Patterned Piezoresistive Device Architecture.
For wearable health monitoring systems and soft robotics, stretchable/flexible pressure sensors have continuously drawn attention owing to a wide range of potential applications such as the detection of human physiological and activity signals, and electronic skin (e-skin). Here, we demonstrated a highly stretchable pressure sensor using silver nanowires (AgNWs) and photo-patternable polyurethane acrylate (PUA). In particular, the characteristics of the pressure sensors could be moderately controlled through a micro-patterned hole structure in the PUA spacer and size-designs of the patterned hole area. With the structural-tuning strategies, adequate control of the site-specific sensitivity in the range of 47~83 kPa-1 and in the sensing range from 0.1 to 20 kPa was achieved. Moreover, stacked AgNW/PUA/AgNW (APA) structural designed pressure sensors with mixed hole sizes of 10/200 µm and spacer thickness of 800 µm exhibited high sensitivity (~171.5 kPa-1) in the pressure sensing range of 0~20 kPa, fast response (100~110 ms), and high stretchability (40%). From the results, we envision that the effective structural-tuning strategy capable of controlling the sensing properties of the APA pressure sensor would be employed in a large-area stretchable pressure sensor system, which needs site-specific sensing properties, providing monolithic implementation by simply arranging appropriate micro-patterned hole architectures
Recommended from our members
Highly-Sensitive Textile Pressure Sensors Enabled by Suspended-Type All Carbon Nanotube Fiber Transistor Architecture.
Among various wearable health-monitoring electronics, electronic textiles (e-textiles) have been considered as an appropriate alternative for a convenient self-diagnosis approach. However, for the realization of the wearable e-textiles capable of detecting subtle human physiological signals, the low-sensing performances still remain as a challenge. In this study, a fiber transistor-type ultra-sensitive pressure sensor (FTPS) with a new architecture that is thread-like suspended dry-spun carbon nanotube (CNT) fiber source (S)/drain (D) electrodes is proposed as the first proof of concept for the detection of very low-pressure stimuli. As a result, the pressure sensor shows an ultra-high sensitivity of ~3050 Pa-1 and a response/recovery time of 258/114 ms in the very low-pressure range of <300 Pa as the fiber transistor was operated in the linear region (VDS = -0.1 V). Also, it was observed that the pressure-sensing characteristics are highly dependent on the contact pressure between the top CNT fiber S/D electrodes and the single-walled carbon nanotubes (SWCNTs) channel layer due to the air-gap made by the suspended S/D electrode fibers on the channel layers of fiber transistors. Furthermore, due to their remarkable sensitivity in the low-pressure range, an acoustic wave that has a very tiny pressure could be detected using the FTPS
Soft lithography for microfluidics: a review
Soft lithography has provided a low-expertise route toward micro/nanofabrication and is playing an important role in microfluidics, ranging from simple channel fabrication to the creation of micropatterns onto a surface or within a microfluidic channel. In this review, the materials, methods, and applications of soft lithography for microfluidics are briefly summarized with a particular emphasis on integrated microfluidic systems containing physical microstructures or a topographically patterned substrate. Relevant exemplary works based on the combination of various soft lithographic methods using microfluidics are introduced with some comments on their merits and weaknesses.This work was supported by Korea Science and
Engineering Foundation (KOSEF) grant funded by the Korea government (MOST) (R01-2007-000-
20675-0) and the Grant-in-Aid for Next-Generation New Technology Development Programs from the Korea Ministry of Commerce, Industry and Energy (No.10030046). This work was also supported by the Korea Research Foundation Grant funded by the
Korean Government (MOEHRD, Basic Research
Promotion Fund)(KRF-2007-331-D00064) for Sun
Min Kim
Recommended from our members
Locally Controlled Sensing Properties of Stretchable Pressure Sensors Enabled by Micro-Patterned Piezoresistive Device Architecture
For wearable health monitoring systems and soft robotics, stretchable/flexible pressure sensors have continuously drawn attention owing to a wide range of potential applications such as the detection of human physiological and activity signals, and electronic skin (e-skin). Here, we demonstrated a highly stretchable pressure sensor using silver nanowires (AgNWs) and photo-patternable polyurethane acrylate (PUA). In particular, the characteristics of the pressure sensors could be moderately controlled through a micro-patterned hole structure in the PUA spacer and size-designs of the patterned hole area. With the structural-tuning strategies, adequate control of the site-specific sensitivity in the range of 47~83 kPa−1 and in the sensing range from 0.1 to 20 kPa was achieved. Moreover, stacked AgNW/PUA/AgNW (APA) structural designed pressure sensors with mixed hole sizes of 10/200 µm and spacer thickness of 800 µm exhibited high sensitivity (~171.5 kPa−1) in the pressure sensing range of 0~20 kPa, fast response (100~110 ms), and high stretchability (40%). From the results, we envision that the effective structural-tuning strategy capable of controlling the sensing properties of the APA pressure sensor would be employed in a large-area stretchable pressure sensor system, which needs site-specific sensing properties, providing monolithic implementation by simply arranging appropriate micro-patterned hole architectures
Roles of endothelial A-type lamins in migration of T cells on and under endothelial layers
Stiff nuclei in cell-dense microenvironments may serve as distinct biomechanical cues for cell migration, but such a possibility has not been tested experimentally. As a first step addressing this question, we altered nuclear stiffness of endothelial cells (ECs) by reducing the expression of A-type lamins using siRNA, and investigated the migration of T cells on and under EC layers. While most T cells crawling on control EC layers avoided crossing over EC nuclei, a significantly higher fraction of T cells on EC layers with reduced expression of A-type lamins crossed over EC nuclei. This result suggests that stiff EC nuclei underlying T cells may serve as "duro-repulsive" cues to direct T cell migration toward less stiff EC cytoplasm. During subendothelial migration under EC layers with reduced expression of A-type lamins, T cells made prolonged contact and substantially deformed EC nuclei, resulting in reduced speed and directional persistence. This result suggests that EC nuclear stiffness promotes fast and directionally persistent subendothelial migration of T cells by allowing minimum interaction between T cells and EC nuclei.open11102sciescopu
Gut taste receptor type 1 member 3 is an intrinsic regulator of Western diet-induced intestinal inflammation
Background
Long-term intake of a Western diet (WD), characterized by a high-fat content and sugary drinks, is hypothesized to contribute to the development of inflammatory bowel disease (IBD). Despite the identified clinical association, the molecular mechanisms by which dietary changes contribute to IBD development remain unknown. Therefore, we examined the influence of long-term intake of a WD on intestinal inflammation and the mechanisms by which WD intake affects IBD development.
Methods
Mice fed normal diet or WD for 10weeks, and bowel inflammation was evaluated through pathohistological and infiltrated inflammatory cell assessments. To understand the role of intestinal taste receptor type 1 member 3 (TAS1R3) in WD-induced intestinal inflammation, cultured enteroendocrine cells harboring TAS1R3, subjected to RNA interference or antagonist treatment, and Tas1r3-deficient mice were used. RNA-sequencing, flow cytometry, 16S metagenomic sequencing, and bioinformatics analyses were performed to examine the involved mechanisms. To demonstrate their clinical relevance, intestinal biopsies from patients with IBD and mice with dextran sulfate sodium-induced colitis were analyzed.
Results
Our study revealed for the first time that intestinal TAS1R3 is a critical mediator of WD-induced intestinal inflammation. WD-fed mice showed marked TAS1R3 overexpression with hallmarks of serious bowel inflammation. Conversely, mice lacking TAS1R3 failed to exhibit inflammatory responses to WD. Mechanistically, intestinal transcriptome analysis revealed that Tas1r3 deficiency suppressed mTOR signaling, significantly increasing the expression of PPARγ (a major mucosal defense enhancer) and upregulating the expression of PPARγ target-gene (tight junction protein and antimicrobial peptide). The gut microbiota of Tas1r3-deficient mice showed expansion of butyrate-producing Clostridia. Moreover, an increased expression of host PPARγ-signaling pathway proteins was positively correlated with butyrate-producing microbes, suggesting that intestinal TAS1R3 regulates the relationship between host metabolism and gut microflora in response to dietary factors. In cultured intestinal cells, regulation of the TAS1R3–mTOR–PPARγ axis was critical for triggering an inflammatory response via proinflammatory cytokine production and secretion. Abnormal regulation of the axis was observed in patients with IBD.
Conclusions
Our findings suggest that the TAS1R3–mTOR–PPARγ axis in the gut links Western diet consumption with intestinal inflammation and is a potential therapeutic target for IBD.This work was supported by the Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education (Grant NRF-2021R1A2C3010280), and the Korea Mouse Phenotyping Project through the National Research Foundation of Korea funded by the Ministry of Science and ICT (Grant NRF-2013M3A9D5072550). The funding sources had no role in the design of the study, in the collection, analysis, and interpretation of data, or in the writing of the manuscrip
Nationwide cross-sectional survey of schistosomiasis and soil-transmitted helminthiasis in Sudan: study protocol.
BACKGROUND: Schistosomiasis and soil-transmitted helminthiasis (STHs) are target neglected tropical diseases (NTDs) of preventive chemotherapy, but the control and elimination of these diseases have been impeded due to resource constraints. Few reports have described study protocol to draw on when conducting a nationwide survey. We present a detailed methodological description of the integrated mapping of schistosomiasis and STHs on the basis of our experiences, hoping that this protocol can be applied to future surveys in similar settings. In addition to determining the ecological zones requiring mass drug administration interventions, we aim to provide precise estimates of the prevalence of these diseases. METHODS: A school-based cross-sectional design will be applied for the nationwide survey across Sudan. The survey is designed to cover all districts in every state. We have divided each district into 3 different ecological zones depending on proximity to bodies of water. We will employ a probability-proportional-to-size sampling method for schools and systematic sampling for student selection to provide adequate data regarding the prevalence for schistosomiasis and STHs in Sudan at the state level. A total of 108,660 students will be selected from 1811 schools across Sudan. After the survey is completed, 391 ecological zones will be mapped out. To carry out the survey, 655 staff members were recruited. The feces and urine samples are microscopically examined by the Kato-Katz method and the sediment smears for helminth eggs respectively. For quality control, a minimum of 10% of the slides will be rechecked by the federal supervisors in each state and also 5% of the smears are validated again within one day by independent supervisors. DISCUSSION: This nationwide mapping is expected to generate important epidemiological information and indicators about schistosomiasis and STHs that will be useful for monitoring and evaluating the control program. The mapping data will also be used for overviewing the status and policy formulation and updates to the control strategies. This paper, which describes a feasible and practical study protocol, is to be shared with the global health community, especially those who are planning to perform nationwide mapping of NTDs by feces or urine sampling
- …