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1. Introduction  

Parkinson’s disease (PD), which is characterized by the degeneration of dopaminergic 

neurons in the substantia nigra pars compacta, is accompanied by symptoms of muscular 

rigidity, bradykinesia, rest tremor, and loss of postural balance (Fearnley & Lees, 1991). 

Mitochondrial dysfunction by reactive oxygen species (ROS)-induced oxidative stress has 

also been suggested to be important in the loss of dopaminergic neurons in PD (Ozawa et 

al., 1990). Therefore, the degeneration of the dopaminergic nigrostriatal tracts in PD results 

in a corresponding decrease in the levels of dopamine and its metabolites, including 3,4-

dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), and norepinephrine 

(Hornykiewicz, 1982).  

3,4-Dihydroxyphenylalanine (L-DOPA), the precursor of dopamine, is the most prescribed 
therapy for the symptomatic relief of PD (Neil & David, 2008; Marsden, 1994). However, 
chronic prolonged therapy for PD with L-DOPA results in a loss of drug efficacy and 
irreversible adverse effects, and subsequently leads to the development of motor 
complications, such as fluctuation and dyskinesia (Jankovic, 2005). L-DOPA and dopamine 
can accelerate the degenerative process in the residual cells in patients with PD and induce 
oxidative stress-induced neurotoxicity by generating ROS in primary dopaminergic neurons 
and dopaminergic cell lines (Cheng et al., 1996). ROS generation leads to neuronal damage and 
apoptotic or non-apoptotic cell death (Walkinshaw & Waters, 1995). Dopaminergic neurons 
are in a perpetual state of oxidative stress, and this imbalance may lead to reduced levels of 
endogenous antioxidants (Merad-Boudia, 1998). In addition, chronic treatment with L-DOPA 
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leads to the production of a specific dopaminergic neurotoxin, 6-hydroxydopamine (6-
OHDA), in the striatum of rodents (Borah & Mohanakumar, 2010). These results fuel the 
search for new agents for PD that are anti-oxidative substances or non-dopaminergic 
alternatives that can relieve the L-DOPA-induced cytotoxicity.  
Various stressful stimuli can induce the production of many ROS and activate both the 

sympathetic nervous system and the hypothalamic-pituitary-adrenal-axis (Ganong, 2001), 

which increases the release of dopamine, norepinephrine, epinephrine, glucocorticoids, 

glutamate, and corticotropin releasing factor in the brain and peripheral circulation (Kandel 

et al., 2000). Chronic stress-induced adverse reactions are increased in neurodegenerative 

diseases, including anxiety disorders, depression, schizophrenia, stroke, Alzheimer's 

disease, and PD (Amanda et al., 2002). For example, the tremor in PD may be worsened by 

anxiety or anger (Schwab & Zieoer, 1965). In addition, a decrease in dopamine levels and an 

enhancement of dopamine turnover have been observed in 1-methyl-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP)-treated mice after immersion immobilization stress, resulting in 

the mice being remarkably akinetic (Urakami et al., 1988). Repeated or relatively prolonged 

exposure to stress can also change central dopamine biosynthesis and extracellular 

dopamine levels in rat models (Ahmed et al., 1955), and changes in the cellular 

characteristics in the prefrontal cortex, such as dendritic atrophy and neuronal loss, have 

been found in response to stress (Rajkowska, 2000).  

The stereotaxic injection of 6-OHDA into the substantia nigra, medial forebrain bundle, and 

striatum of the brain has been commonly used to produce experimental animal models of 

PD. These injections selectively injure dopaminergic neurons through the formation of 

various ROS (Perese et al., 1989). In addition, anti-oxidants, such as glutathione, catalase, 

and N-acetylcysteine, have been shown to be protective against 6-OHDA-induced 

cytotoxicity in PC12 and dopaminergic cells (Przedborski et al., 1995; Paxinos & Watson, 

1986). 

Gynostemma pentaphyllum (Cucurbitaceae; GP) is usually used as an herbal tea, and it is 

widely believed to result in various protective and functional improvements in diabetes, 

depression, anxiety, fatigue, hyperlipidemia, immunity, oxidative stress, and tumors 

(Razmovski-Naumovski et al., 2001). The major constituents of GP, which have been 

isolated, are a number of gypenoside derivatives (Razmovski-Naumovski et al., 2001). The 

gypenoside-rich fraction shows neuroprotective effects in the MPTP-induced mouse model 

of PD (Wang et al., 2010). The ethanol extract from GP has been found to have anti-stress 

and immunomodulatory functions in mice (Choi et al., 2008; Im et al., 2009). GP ethanol 

extract also exhibits protective effects against neurotoxicity by reducing tyrosine 

hydroxylase (TH) neuronal cell death and by normalizing dopamine levels in the 6-OHDA-

lesioned rat model of PD (Choi et al., 2010). These results suggest that GP may function as a 

potential therapeutic and antioxidant in PD. The ethanol extract of GP was partitioned to 

obtain the butanol extract (GP-BX). GP-BX has been shown to have gypenoside-rich 

components, which were identified as gypenoside derivatives, and these include 

gynosaponin TN-1, gynosaponin TN-2, gypenoside XLV, and gypenoside LXXIV (Choi et 

al., 2010; Razmovski-Naumovski et al., 2005; Nagai et al., 1981; Takemoto et al., 1984; 

Yoshikawa et al., 1987).  

The purpose of the present study was to investigate whether orally administered GP-BX 

obtained from the leaves of GP had protective effects against chronic stress in the 6-OHDA-
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lesioned rat model of PD with or without long-term L-DOPA treatment. Dopaminergic 

neuronal cell death induced by chronic stress in 6-OHDA-lesioned rats was blocked by the 

coadministration of GP-BX, and this was shown by histochemical (the number of surviving 

TH-immunopositive neuronal cells) and neurochemical (dopamine, DOPAC, HVA, and 

norepinephrine levels) techniques.  

2. Experimental methods  

2.1 Chemicals  

L-DOPA, 6-OHDA, dopamine, norepinephrine, DOPAC, HVA, benserazide hydrochloride, 

apomorphine, and L-ascorbic acid were purchased from Sigma-Aldrich Co. (St. Louis, MO, 

USA). TH antibody was obtained from Millipore (Temecula, CA, USA). Anti-mouse IgG, 

Vectastain diaminobenzidine (DAB), and avidin/biotin complex (ABC) kits were purchased 

form Vector Laboratories, Inc. (Burlingame, CA, USA). All other chemicals were of 

analytical grade.  

2.2 Preparation of GP-BX 

GP was obtained from Geochang (Gyungnam, Korea), and a voucher specimen of the herbal 

leaves of GP was deposited at the herbarium of the College of Pharmacy, Chungbuk 

National University (Cheongju, Korea). The air-dried leaves of GP (10 kg) were extracted 

with ethanol (80%, v/v), and then the ethanol extracts were evaporated to dryness (GP 

ethanol extract, 1.05 kg; yield, 10.5%, w/w). The dry GP ethanol extracts (1 kg) were 

suspended in water and portioned subsequently with n-hexane, ethylacetate, and n-butanol. 

The final butanol extracts were evaporated to dryness under reduced pressure and 

temperature (GP-BX, 155 g; yield, 15.5%, w/w). 

2.3 Animals 

Rats (Sprague-Dawley, male, 200–250 g) were purchased from Samtako Co. (Animal 
Breeding Center, Osan, Korea). Animals were housed two per cage in a temperature-
controlled environment with a 12-h light/dark cycle (lights on at 07:00) and with ad libitum 
access to standard rat food and water. All procedures were performed according to the 
guidelines of the Animal Ethics Committee of College of Pharmacy (Chungbuk National 
University).  

2.4 Preparation of 6-OHDA-lesioned rats 

The rats were anesthetized intraperitoneally with Zoletil 50 (100 mg/kg, Virbac, Carros, 
France) and placed in a stereotaxic stand (David Kopf Instruments, Tujunga, CA, USA). The 
coordinates for the striatum were measured accurately (antero-posterior, AP: -5.3 mm; 
lateral, ML: +1.9 mm; dorso-ventral, DV: -7.5 mm; relative to bregma). Next, 6-OHDA (8 
μg/2 μL in saline solution containing 0.1% of L-ascorbic acid) was injected into the left 
substantia nigra pars compacta at 1 μL/min using a Hamilton syringe. After the injection, 
the needle was left in place for 5 min before being retracted in order to allow for complete 
diffusion of the medium. The rats were left until they had recovered from the anesthesia. 
Two weeks after the surgery, rats were challenged with apomorphine (0.5 mg/kg, s.c.), and 
the contralateral rotation was monitored. Rats showing fewer than 150 rotations per 30 min 
were excluded from further studies. 
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2.5 The exposure to chronic stress 

Two weeks after the 6-OHDA lesions, the rats were placed individually in the electrified 
shock chamber for the exposure to chronic stress, and they received unavoidable electric 
footshock (EF) (intensity, 0.2 mA; duration, 10 s; interval, 10 min) at 14:00 every other day 
for 28 days using a shock generator (Seil Electric Co., Taejeon, Korea).  

2.6 Drug treatment  

Rats were divided into four groups with each group containing 7–10 rats. GP-BX (30 

mg/kg), which was freshly prepared every day with water, was administered to 6-OHDA-

lesioned rats orally (p.o.) once a day for 28 days. L-DOPA (10 mg/kg, i.p.) was treated with 

benserazide (15 mg/kg, i.p.) prepared in saline in order to prevent the peripheral 

decarboxylation of L-DOPA. The rats were sacrificed the day after the last exposure to stress 

and GP-BX administration. The experimental design was described as follows. 

Experiment I: 

Group I (normal rat groups): received 3 μL of saline containing 0.1% L-ascorbic acid by 
stereotaxic injection into the substantia nigra.  
Group II (6-OHDA-lesioned rat groups): received 6-OHDA (8 μg/2 μL in saline solution 
containing 0.1% of L-ascorbic acid) by stereotaxic injection into the left substantia nigra.  
Group III (6-OHDA-lesioned rat groups + chronic EF stress): exposed to EF stress for 28 
days two weeks after receiving 6-OHDA (8 μg/2 μL).  
Group IV (6-OHDA-lesioned rat groups + chronic EF stress + GP-BX): administered GP-BX 
(30 mg/kg) for 28 days to EF stress-exposed 6-OHDA-lesioned rat groups (Group III).  

Experiment II: 

Group I (L-DOPA-treated 6-OHDA-lesioned rat groups): treated with L-DOPA (10 mg/kg) 
for 28 days two weeks after receiving 6-OHDA (8 μg/2 μL).  
Group II (L-DOPA-treated 6-OHDA-lesioned rat groups + chronic EF stress): exposed to EF 
stress for 28 days in L-DOPA (10 mg/kg)-treated 6-OHDA-lesioned rat groups (Group I).  
Group III (L-DOPA-treated 6-OHDA-lesioned rat groups + GP-BX): administered GP-BX (30 
mg/kg) for 28 days in L-DOPA-treated 6-OHDA-lesioned groups (Group I).  
Group IV (L-DOPA-treated 6-OHDA-lesioned rat groups + chronic EF stress + GP-BX): 
administered GP-BX (30 mg/kg) for 28 days in L-DOPA-treated 6-OHDA-lesioned groups 
exposed to chronic EF stress (Group II). 

2.7 TH-immunohistochemistry staining 

For the immunohistochemical study, the rats were sacrificed 28 days after 6-OHDA 
lesioning and then perfused intracardially with saline, which was followed by 4% 
paraformaldehyde of the fixative solution. The brain was removed from the skull and 
placed in 30% sucrose solution. Sections of 35-μm thickness were cut with a Vibratome 
(Leica Microsystems GmbH, Wetzlar, Germany). The tissue sections were incubated with 
primary anti-TH antibody raised in rabbits and diluted in PBS containing 0.3% Triton X-100 
(1:200, AB152, Millipore) overnight at 4°C. A 1:250 dilution of biotinylated anti-rabbit IgG 
was used as a secondary antibody, and the sections were then incubated with an ABC kit. 
TH immunoreactivity was visualized using a DAB kit (Vector Laboratories, Inc.). 
Photomicrographs of TH and digitized bright-field images were captured using a Zeiss 
Axiophot microscope (Carl Zeiss MicroImaging GmbH, Jena, Germany) (100X 
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magnification). Cell counting was done using a computerized image analysis system 
(Axiovision software, Carl Zeiss MicroImaging GmbH). Analysis values obtained on the 
ipsilateral side (6-OHDA-lesioned side) were expressed as a percentage of those on the 
intact contralateral side (intact side).  

2.8 Biochemical analysis  

The brains were removed quickly, and the striatum was dissected in cold conditions. The 
samples were homogenized in 300 μL HClO4. The homogenates were immediately 
centrifuged at 50,000 × g at 4°C for 20 min, and then, the supernatants were filtered using 
pore filters (0.45 μm). The levels of dopamine, DOPAC, HVA, and norepinephrine in the 
striatum were measured with a high-performance liquid chromatography (HPLC) system. 
The HPLC system consisted of a solvent delivery pump (Model 1525, Waters, Milford, MA, 
USA), an electrochemical detector (+0.85 V, Ag/AgCl reference electrode; Model 2465; 
Waters), and a Waters 120 ODS-BP column (5 μm, 50 × 4.6 mm). The mobile phase consisted 
of 10 mM citric acid, 0.13 mM Na4EDTA, 0.58 mM SOS, and 10% methanol, and a flow rate 
of 1 mL/min. The results were expressed in terms of ng/g tissue.  

2.9 Statistical analysis 
All data were expressed as means ± S.E.M. Data were analyzed with an one-way analysis of 
variance (ANOVA) followed by a Tukey’s test. P values <0.05 were considered statistically 
significant. 

3. Results  

3.1 TH-immunopositive neuronal cell survival in the substantia nigra of 6-OHDA-
lesioned rats exposed to chronic EF stress and administered GP-BX 

TH-immunopositive neuronal cell death by 6-OHDA lesions in the substantia nigra was 
ameliorated by the administration of GP-BX at 30 mg/kg (p.o.) for 28 days (Figure 1). TH-
immunopositive neurons were observed consecutively in both the substantia nigra 
compacta and lateralis. TH-immunostained nerve fibers in the substantia nigra were tangled 
into a net, and the cells were either poly- or ovoid-shaped in the normal areas (Figure 1, A-
I). The substantia nigra regions near the 6-OHDA-lesioned areas displayed drastic 
reductions in TH-immunopositive neuronal cells, and the staining intensity was decreased 
compared with the intact sides of the control rat groups (Figure 1, A-II). After exposure to 
chronic EF stress, TH-immunopositive neuronal cells were decreased in the substantia nigra 
of both the normal and the 6-OHDA-lesioned rats, even though the color was uneven, 
compared to the 6-OHDA-lesioned rat groups without chronic EF stress (Figure 1, A-II and 
III). However, the administration of GP-BX at 30 mg/kg (p.o.) for 28 days ameliorated the 
loss of TH-immunopositive neuronal cells induced by the exposure to chronic EF stress in 
both the intact and 6-OHDA-lesioned sides of 6-OHDA-lesioned rats (Figure 1, A-IV). 
The number of TH-immunopositive neuronal cells on the ipsilateral sides (6-OHDA-
lesioned sides) was analyzed as a percentage of those in the intact contralateral sides (intact 
sides) of 6-OHDA-lesioned rat groups. In the 6-OHDA-lesioned rat groups, 6-OHDA lesions 
caused a marked decrease in the number of TH-immunopositive neuronal cells in the intact 
and 6-OHDA-lesioned sides to 79.1% and 35.8%, respectively, compared to the normal rat 
groups (Figure 1, B-I and II). In addition, the exposure to chronic EF stress in the 6-OHDA-
lesioned rat groups further decreased the number of TH-immunopositive neuronal cells in 
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the intact and 6-OHDA-lesioned sides to 45.9% and 19.9%, respectively, compared to the 6-
OHDA-lesioned rat groups (Figure, B-II and III). However, in the 6-OHDA-lesioned rat 
groups exposed to chronic EF stress, GP-BX administration (30 mg/kg) for 28 days showed 
a protective effect on the loss of the number of TH-immunopositive neuronal cells in the 
intact and 6-OHDA-lesioned sides to 63.0% and 38.1%, respectively (Figure 1, B-III and IV). 
 

 

Fig. 1. Photomicrographs of tyrosine hydroxylase (TH) immunoreactivity on substantia nigra 
tissue sections from representative rats of each group (A), and the number of surviving TH-
immunopositive neuronal cells in the ipsilateral substantia nigra [6-hydroxydopamine (6-
OHDA)-lesioned side] was analyzed as a percentage of that in the intact contralateral side 
(intact side) (B). Normal rat groups (I), 6-OHDA-lesioned rat groups (II), 6-OHDA-lesioned rat 
groups + chronic electric foot (EF) stress (III), and 6-OHDA-lesioned rat groups + chronic EF 
stress + Gynostemma pentaphyllum-butanol extract (GP-BX) (IV). Rats were treated with GP-BX 
(30 mg/kg/day, p.o.) or vehicle (0.9% saline, p.o.) and then subjected to every-other-day 
sessions of EF stress (duration and interval of 10 s for 10 min, 2 mA). These data are 
representative of 7–10 animals per group, and the arrow indicates the 6-OHDA-lesioned side. 
TH-immunopositive neuronal cells were analyzed as a percentage of intact side. Scale bar is 
100 μm. * p < 0.05 compared with 6-OHDA-lesioned rat groups; # p < 0.05 compared with 6-
OHDA-lesioned rat groups + chronic EF stress (ANOVA followed by Tukey’s test). 

3.2 The levels of dopamine, DOPAC, HVA, and norepinephrine in the striatum of 6-
OHDA-lesioned rats exposed to chronic EF-stress and administered GP-BX 
The levels of dopamine, DOPAC, HVA, and norepinephrine in the striatum of GP-BX-

administered normal rats (those without 6-OHDA lesions) were not altered compared to the 

GP-BX-untreated rat groups (data not shown). In addition, no differences were seen on the 

intact side of normal rats, 6-OHDA-lesioned rat groups, and 6-OHDA-lesioned rat groups 

administered GP-BX (30 mg/kg, 28 days). 

A significant decrease in the levels of dopamine, DOPAC, HVA, and norepinephrine by 
47.0%, 44.3%, 38.6%, and 40.5% in the 6-OHDA-lesioned sides of the 6-OHDA-lesioned rat 
groups, respectively, was observed (Figure 2, I and II). Chronic EF stress-exposed 6-OHDA-
lesioned rat groups had a more marked decrease in the levels of dopamine, DOPAC, HVA, 
and norepinephrine to 71.7% and 28.2%, 66.9% and 28.3%, 61.0% and 25.3%, and 71.6% and 
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27.4%, respectively, in both the intact and 6-OHDA-lesioned sides, compared with 6-OHDA-
lesioned rats without chronic EF stress (Figure 2, II and III). However, GP-BX administration 
(30 mg/kg) for 28 days resulted in an improvement in the reduced levels of dopamine, 
DOPAC, HVA, and norepinephrine by chronic EF stress to 84.6% and 47.8%, 79.7% and 47.9, 
72.8% and 46.0%, and 88.6% and 46.8%, respectively, in the intact and 6-OHDA-lesioned 
sides of the 6-OHDA-lesioned rat groups (Figure 2, III and IV). 
 

 

Fig. 2. Effects of GP-BX on the levels of dopamine (A), 3,4-dihydroxyphenylacetic acid 
(DOPAC; B), homovanillic acid (HVA; C), and norepinephrine (D) in the striatum of 6-
OHDA-lesioned rats. Normal rat groups (I), 6-OHDA-lesioned rat groups (II), 6-OHDA-
lesioned rat groups + chronic EF stress (III), and 6-OHDA-lesioned rat groups + chronic EF 
stress+ GP-BX (IV). Rats were treated with GP-BX (30 mg/kg/day, p.o.) or vehicle (0.9% 
saline, p.o.) and then subjected to every-other-day sessions of EF stress (duration and 
interval of 10 s for 10 min, 2 mA). After 4 weeks, the brains were removed, and the levels of 
dopamine, DOPAC, HVA, and norepinephrine were determined by a high-performance 
liquid chromatography (HPLC) method. Results represent means ± S.E.M. for 7–10 animals 
per group. * p < 0.05 compared with 6-OHDA-lesioned rat groups; # p < 0.05 compared with 
6-OHDA-lesioned rat groups + chronic EF stress (ANOVA followed by Tukey’s test). 

3.3 TH-immunopositive neuronal cell survival in L-DOPA-treated 6-OHDA-lesioned 
rats exposed to chronic EF stress and administered GP-BX 

Treatment with L-DOPA (10 mg/kg) for 28 days in 6-OHDA-lesioned rats slightly increased 
the number of TH-immunopositive neuronal cells in the 6-OHDA-lesioned sides compared 
to the L-DOPA-untreated 6-OHDA-lesioned rats (Figure 1-II and 3-I), indicating that a low 
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dose of L-DOPA showed a protective and therapeutic activity. However, with exposure to 
chronic stress, the number of TH-immunopositive neuronal cells was significantly reduced 
in the substantia nigra in the L-DOPA-treated 6-OHDA-lesioned rat groups (Figure 3, A I 
and II). Furthermore, GP-BX administration (30 mg/kg) for 28 days protected against the 
loss of TH-immunopositive neuronal cells in L-DOPA-treated 6-OHDA-lesioned rat groups 
with or without chronic EF stress (Figure 3, A III and IV). Chronic EF stress induced the loss 
of a number of TH-immunopositive neuronal cells in both the intact and 6-OHDA-lesioned 
sides: the number of TH-immunopositive neuronal cells in the 6-OHDA-lesioned sides was 
decreased to 45.1% by the exposure to chronic EF stress in L-DOPA (10 mg/kg)-treated 6-
OHDA-lesioned rat groups compared with those without chronic EF stress (Figure 3, A I 
and II). However, GP-BX administration (30 mg/kg) recovered the number of TH-
immunopositive neuronal cells by 12.1% in the intact sides of L-DOPA-treated 6-OHDA-
lesioned rats (Figure 3, B I and III) and also increased them by 18.6% and 36.7%, 
respectively, in the intact and 6-OHDA-lesioned sides of chronic EF stress-exposed 6-
OHDA-lesioned rats compared with GP-BX-untreated groups (Figure 3, B II and IV). 
 

 

Fig. 3. Photomicrographs of TH immunoreactivity on substantia nigra tissue sections from 
representative rats of each group (A), and the number of surviving TH-immunopositive 
neuronal cells in the ipsilateral substantia nigra (6-OHDA-lesioned side) was analyzed as a 
percentage of that in the intact contralateral side (intact side) (B). L-DOPA-treated 6-OHDA-
lesioned rat groups (I), L-DOPA-treated 6-OHDA-lesioned rat groups + chronic EF stress 
(II), L-DOPA-treated 6-OHDA-lesioned rat groups + GP-BX (III), and L-DOPA-treated 6-
OHDA-lesioned rat groups + chronic EF stress + GP-BX (IV). Rats were treated with GP-BX 
(30 mg/kg/day, p.o.) or vehicle (0.9% saline, p.o.) and then subjected to every-other-day 
sessions of EF stress (duration and interval of 10 s for 10 min, 2 mA). L-DOPA (10 
mg/kg/day, i.p.) was administered with benserazide (15 mg/kg/day, i.p.) prepared in 
saline. These data are representative of 7–10 animals per group, and the arrow indicates 6-
OHDA-lesioned side. TH-immunopositive neuronal cells were analyzed as a percentage of 
intact side. Scale bar is 100 μm. * p < 0.05 compared with L-DOPA-treated 6-OHDA-lesioned 
rat groups; # p < 0.05 compared with L-DOPA-treated 6-OHDA-lesioned rat groups; § p < 
0.05 compared with L-DOPA-treated 6-OHDA-lesioned rat groups + chronic EF stress 
(ANOVA followed by Tukey’s test). 
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3.4 The levels of dopamine, DOPAC, HVA, and norepinephrine in the striatum of L-
DOPA- treated 6-OHDA-lesioned rats exposed to chronic EF stress and administered 
GP-BX 

The levels of dopamine, DOPAC, HVA, and norepinephrine were slightly increased in the 

striatal regions of the 6-OHDA-lesioned rat groups treated with L-DOPA (10 mg/kg), 

compared with those of the L-DOPA-untreated groups (Figures 2 and 4), but they were still 

decreased by 6-OHDA lesions (Figure 4, A-D I). The exposure to chronic EF stress in the L- 

 

 

Fig. 4. Effects of GP-BX on the levels of dopamine (A), DOPAC (B), HVA (C), and 
norepinephrine (D) in the striatum of 6-OHDA-lesioned rats. L-DOPA-treated 6-OHDA-
lesioned rat groups (I), L-DOPA-treated 6-OHDA-lesioned rat groups + chronic EF stress 
(II), L-DOPA-treated 6-OHDA-lesioned rat groups + GP-BX (III), and L-DOPA-treated 6-
OHDA-lesioned rat groups + chronic EF stress + GP-BX (IV). Rats were treated with GP-BX 
(30 mg/kg/day, p.o.) or vehicle (0.9% saline, p.o.) and then subjected to every-other-day 
sessions of EF stress (duration and interval of 10 s for 10 min, 2 mA). L-DOPA (10 
mg/kg/day, i.p.) was administered with benserazide (15 mg/kg/day, i.p.) prepared in 
saline. After 4 weeks, the brains were removed, and the levels of dopamine, DOPAC, HVA, 
and norepinephrine were determined by an HPLC method. Results represent means ± 
S.E.M. for 7–10 animals per group. * p < 0.05 compared with L-DOPA-treated 6-OHDA-
lesioned rat groups; # p < 0.05 compared with L-DOPA-treated 6-OHDA-lesioned rat 
groups; § p < 0.05 compared with L-DOPA-treated 6-OHDA-lesioned rat groups + chronic 
EF stress. (ANOVA followed by Tukey’s test). 
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DOPA (10 mg/kg)-treated 6-OHDA-lesioned rat groups showed a further significant 

decrease in the levels of dopamine, DOPAC, HVA, and norepinephrine in the 6-OHDA-

lesioned sides of the striatal regions by 43.0%, 47.9%, 43.1%, and 47.4%, respectively, 

compared with those of the unstressed groups (Figure 4, A-D I and II). This was 

significantly recovered by 30 mg/kg GP-BX administration for 28 days (Figure 4, A-D I and 

III). In addition, 30 mg/kg GP-BX administration for 28 days resulted in an improvement in 

the levels of dopamine, DOPAC, HVA, and norepinephrine to 62.5%, 54.5%, 55.1%, and 

31.7%, respectively, in the L-DOPA (10 mg/kg)-treated 6-OHDA-lesioned rat groups (Figure 

4, A-D I and IV).  

4. Discussion  

The neurotoxin 6-OHDA is commonly used for animal models of PD, and it is believed to 

cause dopaminergic cell death with a unilateral destruction of the nigrostriatal system 

(Schober, 2004). Among the various bioactive functions of GP, it has been known to have 

anti-oxidant, anti-inflammatory, and immunostimulatory actions (Razmovski-Naumovski et 

al., 2005). In addition, GP ethanol extract has been found to have an anti-stress function 

against chronic EF stress in mice (Choi et al., 2008; Im et al., 2009). In this study, the 

neuroprotective functions of GP-BX on the exposure to chronic EF stress in the 6-OHDA-

lesioned rat model of PD with or without long-term L-DOPA treatment were investigated 

by determining the quantities of TH-immunopositive neuronal cells surviving in the 

substantia nigra and the levels of dopamine, DOPAC, HVA, and norepinephrine in the 

striatum. 

GP ethanol extracts at doses of 10–50 mg/kg/day for 28 days did not show toxic effects, 

such as weight loss or death in rats (Choi et al., 2008; Im et al., 2009), and the water extract 

(750 mg/kg) of GP also did not produce any significant toxic effects in rats during a 6-

month period of treatment (Attawish et al., 2004). GP-BX (30 mg) was selected in this study, 

and its administration for 28 days did not exhibit adverse effects, such as weight loss, 

diarrhea, vomiting, or death. 

The infusion of 6-OHDA into the CNS resulted in decreased rotational movements, 

including stereotypic behavior, by the change of monoamine contents (Deumens et al., 

2002), which was recovered by GP-BX administration (data not shown). These findings 

suggest that GP-BX showed a preventive activity against 6-OHDA-lesioned rats.  

The number of TH-immunopositive surviving cells showed a large decrease in the 

ventrolateral side of the substantia compacta (intact side), and their numbers were well 

maintained in the ventral tegmental area (VTA) of the ventral side (intact side). These 

findings were very similar to the pathological findings of PD. However, the number of TH-

immunopositive neuronal cells in the VTA decreased slightly due to the passage of time 

with 6-OHDA (Figure 1, A I and II). The chronic exposure to EF stress every other day for 28 

days enhanced the 6-OHDA-induced dopaminergic neuronal cell death in the 6-OHDA-

lesioned rat groups used as a PD model system (Figures 1 and 2). The chronic EF stress also 

inhibited the therapeutic effects of L-DOPA (10 mg/kg) in the 6-OHDA-lesioned rats 

(Figures 3 and 4). However, GP-BX administration (30 mg/kg) for 28 days ameliorated the 

enhanced neurotoxic effects induced by the exposure to chronic EF stress in 6-OHDA-

lesioned rats with or without L-DOPA: the number of surviving TH-immunopositive 

www.intechopen.com



Neuroprotective Effects of Herbal Butanol Extracts from Gynostemma pentaphyllum on the 
Exposure to Chronic Stress in a 6-Hydroxydopamine-Lesioned Rat Model of Parkinson's Disease... 

 

361 

neuronal cells in the substantia nigra and the levels of dopamine, DOPAC, HVA, and 

norepinephrine in the striatum were recovered by GP-BX. In addition, GP-BX inhibited 6-

OHDA-induced neurotoxicity in the brain regions of normal rats and 6-OHDA-lesioned rats 

(data not shown), which was similar to the findings with GP ethanol extract (Choi et al., 

2010). These results indicate that oral administration of GP-BX exhibited a preventive and 

protective activity against the chronic EF stress- and/or 6-OHDA-induced dopaminergic 

neuronal cell death in rats.  

Stressful stimuli induced the production of ROS and increased the release of catecholamines 

and glucocorticoids (Ganong, 2001; Kandel et al., 2000), which reduced the function of 

immune systems (Im et al., 2009). Immobilized stress inhibited the neuroprotective effects of 

free-running wheel exercise in a rat model of PD (Urakami et al,, 1988). The exposure to 

chronically repetitive stress also reduced dopamine levels in the rat brain, leading to 

decreased ambulatory activity (Ahmed et al., 1995; Rajkowska, 2000). ROS, which are 

generated by 6-OHDA by autoxidation, directly destroyed DNA, essential proteins, and cell 

lipid membranes to cause necrosis (Schober, 2004). In addition, 6-OHDA was detected in rat 

brain after L-DOPA treatment due to the high levels of dopamine and hydrogen peroxide 

(Maharaj et al., 2005), which induced dopaminergic neuronal cell death by inflammatory 

processes and oxidative apoptosis (Blum et al., 2004). L-DOPA treatment in MPTP-induced 

PD rodents increased the striatal 6-OHDA levels, which may be sensitized by monoamine 

oxidase inhibitor (Borah & Mohanakumar, 2010). Long-term treatment with L-DOPA caused 

disabling motor side effects in PD and alleviated oxidative stress-induced neurotoxicity by 

ROS formation against striatal dopaminergic neurons and PC12 cells (Basma et al., 1995; 

Walkinshaw & Waters, 1995; Migheli et al., 1999). Subchronic or chronic L-DOPA treatment 

resulted in increased levels of dopamine and hydroxyl-free radicals in the striatum (Pandey 

et al., 2009). L-DOPA also showed treatment dose-dependent dual functions, including 

protection and neurotoxicity, in the 6-OHDA-lesioned rat model of PD (Cenci, 2009). In 

addition, L-DOPA at low concentrations (3–10 μM) produced trophic or cell-protective 

effects on neuronal and differentiated PC12 cells (Mena et al., 1997). In this study, L-DOPA 

treatment of 10 mg/kg for 28 days showed a slightly protective effect by increasing TH-

immunopositive surviving cells in 6-OHDA-lesioned rats. However, the TH-

immunopositive surviving cells were decreased by chronic EF stress (Figures 1 and 3), 

suggesting that the function of L-DOPA in rat model of PD was aggravated by the exposure 

to chronic EF stress. Taken together, these results suggest that the formation of ROS by 

chronic stress can enhance dopaminergic neuronal cell death in 6-OHDA-lesioned rats with 

or without L-DOPA treatment. Therefore, it is proposed that antioxidants scavenging 6-

OHDA- or L-DOPA-induced ROS are a key to the prevention and control of the symptoms 

of PD (Andrew et al., 1993). 

Previously, we reported that GP ethanol extract had an anti-stress function by improving 

the loss of body weight and the reduction of grip strength in rodents, which was induced by 

chronic EF stress (Choi et al., 2008). The extract also showed an immunomodulatory activity 

by preventing dexamethasone-induced immunosuppression (Im et al., 2009). In addition, 

GP ethanol extract protected against 6-OHDA-induced neurotoxicity in 6-OHDA-lesioned 

rats (Choi et al., 2010). In this study, GP-BX exhibited a protective activity against chronic EF 

stress by reducing L-DOPA-induced neuronal cell death in 6-OHDA-lesioned rats treated 

with L-DOPA. These results suggest that the protective functions of GP-BX on chronic EF 
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stress- and L-DOPA-induced neurotoxicity could be mediated by the modulation of the ROS 

formation and immune system in rodents. 

The gypenoside-rich fraction, gypenosides, protected against oxidative neurotoxicity 

involving glutamate in primary cultures of rat cortical cells (Shang et al., 2006) and showed 

anti-inflammatory activity (Lin et al., 1993). Gypenosides also showed a protective effect on 

dopaminergic neuronal cell death in the MPTP-induced rat model of PD (Wang et al., 2010). 

It has been shown that GP-BX has several gypenoside derivatives, including gynosaponin 

TN-1, gynosaponin TN-2, gypenoside XLV, and gypenoside LXXIV (Choi et al., 2010; 

Razmovski-Naumovski et al., 2005; Nagai et al., 1981; Takemoto et al., 1984; Yoshikawa et 

al., 1987). These data further support that GP-BX can be applied for the prevention of the 

symptoms of PD by scavenging the formation of ROS.  

Besides herbal GP, black tea extract exhibited neuroprotective and neurorescue effects 

against 6-OHDA-induced degeneration of the nigrostriatal dopaminergic system 

(Chaturvedi et al., 2004), and Yeoldahanso-tang, which is a Korean herbal formula 

containing 10 herbs, also protected against neurotoxicity in a MPTP-induced mice model of 

PD (Bae et al., 2011). Therefore, the comparative functions for PD among these herbal 

extracts, including drug interactions, adverse effects, and toxicity may need to be studied 

further. 

5. Conclusion  

GP-BX showed protective functions for dopaminergic neurons from chronic stress- and L-

DOPA-induced neurotoxicity in 6-OHDA-lesioned rat model of PD. Considering our results, 

GP-BX may be helpful in preventing the L-DOPA-induced adverse or oxidative toxic effects 

for PD, especially with chronic stress, as well as slow down the progression of PD 

symptoms. Clinical trials for patients with PD using herbal GP extract and its bioactive 

components need to be studied further.  
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