3,996 research outputs found

    Tetratic Order in the Phase Behavior of a Hard-Rectangle System

    Full text link
    Previous Monte Carlo investigations by Wojciechowski \emph{et al.} have found two unusual phases in two-dimensional systems of anisotropic hard particles: a tetratic phase of four-fold symmetry for hard squares [Comp. Methods in Science and Tech., 10: 235-255, 2004], and a nonperiodic degenerate solid phase for hard-disk dimers [Phys. Rev. Lett., 66: 3168-3171, 1991]. In this work, we study a system of hard rectangles of aspect ratio two, i.e., hard-square dimers (or dominos), and demonstrate that it exhibits a solid phase with both of these unusual properties. The solid shows tetratic, but not nematic, order, and it is nonperiodic having the structure of a random tiling of the square lattice with dominos. We obtain similar results with both a classical Monte Carlo method using true rectangles and a novel molecular dynamics algorithm employing rectangles with rounded corners. It is remarkable that such simple convex two-dimensional shapes can produce such rich phase behavior. Although we have not performed exact free-energy calculations, we expect that the random domino tiling is thermodynamically stabilized by its degeneracy entropy, well-known to be 1.79kB1.79k_{B} per particle from previous studies of the dimer problem on the square lattice. Our observations are consistent with a KTHNY two-stage phase transition scenario with two continuous phase transitions, the first from isotropic to tetratic liquid, and the second from tetratic liquid to solid.Comment: Submitted for publicatio

    The TAOS Project: Upper Bounds on the Population of Small KBOs and Tests of Models of Formation and Evolution of the Outer Solar System

    Get PDF
    We have analyzed the first 3.75 years of data from TAOS, the Taiwanese American Occultation Survey. TAOS monitors bright stars to search for occultations by Kuiper Belt Objects (KBOs). This dataset comprises 5e5 star-hours of multi-telescope photometric data taken at 4 or 5 Hz. No events consistent with KBO occultations were found in this dataset. We compute the number of events expected for the Kuiper Belt formation and evolution models of Pan & Sari (2005), Kenyon & Bromley (2004), Benavidez & Campo Bagatin (2009), and Fraser (2009). A comparison with the upper limits we derive from our data constrains the parameter space of these models. This is the first detailed comparison of models of the KBO size distribution with data from an occultation survey. Our results suggest that the KBO population is comprised of objects with low internal strength and that planetary migration played a role in the shaping of the size distribution.Comment: 18 pages, 16 figures, Aj submitte

    Random on-board pixel sampling (ROPS) X-ray Camera

    Full text link
    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. Here we first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.Comment: 9 pages, 6 figures, Presented in 19th iWoRI

    First Results From The Taiwanese-American Occultation Survey (TAOS)

    Get PDF
    Results from the first two years of data from the Taiwanese-American Occultation Survey (TAOS) are presented. Stars have been monitored photometrically at 4 Hz or 5 Hz to search for occultations by small (~3 km) Kuiper Belt Objects (KBOs). No statistically significant events were found, allowing us to present an upper bound to the size distribution of KBOs with diameters 0.5 km < D < 28 km.Comment: 5 pages, 5 figure, accepted in Ap

    Spitzer Mid-IR Spectra of Dust Debris Around A and Late B Type Stars: Asteroid Belt Analogs and Power-Law Dust Distributions

    Get PDF
    Using the Spitzer/Infrared Spectrograph (IRS) low-resolution modules covering wavelengths from 5 to 35 μm, we observed 52 main-sequence A and late B type stars previously seen using Spitzer/Multiband Imaging Photometer (MIPS) to have excess infrared emission at 24 μm above that expected from the stellar photosphere. The mid-IR excess is confirmed in all cases but two. While prominent spectral features are not evident in any of the spectra, we observed a striking diversity in the overall shape of the spectral energy distributions. Most of the IRS excess spectra are consistent with single-temperature blackbody emission, suggestive of dust located at a single orbital radius—a narrow ring. Assuming the excess emission originates from a population of large blackbody grains, dust temperatures range from 70 to 324 K, with a median of 190 K corresponding to a distance of 10 AU. Thirteen stars however, have dust emission that follows a power-law distribution, F_ν = F 0λ^α, with exponent α ranging from 1.0 to 2.9. The warm dust in these systems must span a greater range of orbital locations—an extended disk. All of the stars have also been observed with Spitzer/MIPS at 70 μm, with 27 of the 50 excess sources detected (signal-to-noise ratio > 3). Most 70 μm fluxes are suggestive of a cooler, Kuiper Belt-like component that may be completely independent of the asteroid belt-like warm emission detected at the IRS wavelengths. Fourteen of 37 sources with blackbody-like fits are detected at 70 μm. The 13 objects with IRS excess emission fit by a power-law disk model, however, are all detected at 70 μm (four above, three on, and six below the extrapolated power law), suggesting that the mid-IR IRS emission and far-IR 70 μm emission may be related for these sources. Overall, the observed blackbody and power-law thermal profiles reveal debris distributed in a wide variety of radial structures that do not appear to be correlated with spectral type or stellar age. An additional 43 fainter A and late B type stars without 70 μm photometry were also observed with Spitzer/IRS; results are summarized in Appendix B

    UV excess galaxies: Wolf-Rayet galaxies

    Get PDF
    We discuss V and R band photometry for 67% of the Sullivan et al. 2000 SA57 ultraviolet-selected galaxy sample. In a sample of 176 UV-selected galaxies, Sullivan et al. 2000 find that 24% have (UV-B) colors too blue for consistency with starburst spectral synthesis models. We propose that these extreme blue, UV excess galaxies are Wolf-Rayet (WR) galaxies, starburst galaxies with strong UV emission from WR stars. We measure a median (V-R)=0.38+-0.06 for the UV-selected sample, bluer than a sample optically selected at R but consistent with starburst and WR galaxy colors. We demonstrate that redshifted WR emission lines can double or triple the flux through the UV bandpass at high redshifts. Thus the (UV-B) color of a WR galaxy can be up to 1.3 mag bluer at high redshift, and the expected selection function is skewed to larger redshifts. The redshift distribution of the extreme blue, UV excess galaxies matches the selection function we predict from the properties of WR galaxies.Comment: 4 pages, including 4 figures. Uses AASTeX and emulateapj5.sty. Includes referee change

    Accretion in the Early Kuiper Belt II. Fragmentation

    Full text link
    We describe new planetesimal accretion calculations in the Kuiper Belt that include fragmentation and velocity evolution. All models produce two power law cumulative size distributions, N_C propto r^{-q}, with q = 2.5 for radii less than 0.3-3 km and q = 3 for radii exceeding 1-3 km. The power law indices are nearly independent of the initial mass in the annulus, the initial eccentricity of the planetesimal swarm, and the initial size distribution of the planetesimal swarm. The transition between the two power laws moves to larger radii as the initial eccentricity increases. The maximum size of objects depends on their intrinsic tensile strength; Pluto formation requires a strength exceeding 300 erg per gram. Our models yield formation timescales for Pluto-sized objects of 30-40 Myr for a minimum mass solar nebula. The production of several `Plutos' and more than 10^5 50 km radius Kuiper Belt objects leaves most of the initial mass in 0.1-10 km radius objects that can be collisionally depleted over the age of the solar system. These results resolve the puzzle of large Kuiper Belt objects in a small mass Kuiper Belt.Comment: to appear in the Astronomical Journal (July 1999); 54 pages including 7 tables and 13 figure

    Search for pulsating PMS stars in NGC 6383

    Full text link
    A search for pulsating pre-main sequence (PMS) stars was performed in the young open cluster NGC 6383 using CCD time series photometry in Johnson B & V filters. With an age of only ~1.7 million years all cluster members later than spectral type A0 have not reached the ZAMS yet, hence being ideal candidates for investigating PMS pulsation among A and F type stars. In total 286 stars have been analyzed using classical Fourier techniques. From about a dozen of stars within the boundaries of the classical instability strip, two stars were found to pulsate: NGC 6383 #170, with five frequencies simultaneously, and NGC 6383 #198, with a single frequency. In addition, NGC 6383 #152 is a suspected PMS variable star, but our data remain inconclusive. Linear, non-adiabatic models assuming PMS evolutionary phase and purely radial pulsation were calculated for the two new PMS pulsators. NGC 6383 #170 appears to pulsate radially in third and fifth overtones, while the other three frequencies seem to be of non-radial nature. NGC 6383 #198 pulsates monoperiodically, most probably in the third radial overtone. Magnitudes and B-V colours were available in the literature for only one third of all stars and we used them for calibrating the remaining.Comment: 12 pages, 11 figures, accepted by MNRA

    Collisional Cascades in Planetesimal Disks I. Stellar Flybys

    Get PDF
    We use a new multiannulus planetesimal accretion code to investigate the evolution of a planetesimal disk following a moderately close encounter with a passing star. The calculations include fragmentation, gas and Poynting-Robertson drag, and velocity evolution from dynamical friction and viscous stirring. We assume that the stellar encounter increases planetesimal velocities to the shattering velocity, initiating a collisional cascade in the disk. During the early stages of our calculations, erosive collisions damp particle velocities and produce substantial amounts of dust. For a wide range of initial conditions and input parameters, the time evolution of the dust luminosity follows a simple relation, L_d/L_{\star} = L_0 / [alpha + (t/t_d)^{beta}]. The maximum dust luminosity L_0 and the damping time t_d depend on the disk mass, with L_0 proportional to M_d and t_d proportional to M_d^{-1}. For disks with dust masses of 1% to 100% of the `minimum mass solar nebula' (1--100 earth masses at 30--150 AU), our calculations yield t_d approx 1--10 Myr, alpha approx 1--2, beta = 1, and dust luminosities similar to the range observed in known `debris disk' systems, L_0 approx 10^{-3} to 10^{-5}. Less massive disks produce smaller dust luminosities and damp on longer timescales. Because encounters with field stars are rare, these results imply that moderately close stellar flybys cannot explain collisional cascades in debris disk systems with stellar ages of 100 Myr or longer.Comment: 33 pages of text, 12 figures, and an animation. The paper will appear in the March 2002 issue of the Astronmomical Journal. The animation and a copy of the paper with full resolution figures are at S. Kenyon's planet formation website: http://cfa-www.harvard.edu/~kenyon/p
    • …
    corecore