5,072 research outputs found

    Thermonuclear runaways in thick hydrogen rich envelopes of neutron stars

    Get PDF
    A Lagrangian, fully implicit, one dimensional hydrodynamic computer code was used to evolve thermonuclear runaways in the accreted hydrogen rich envelopes of 1.0 Msub solar neutron stars with radii of 10 km and 20 km. Simulations produce outbursts which last from about 750 seconds to about one week. Peak effective temeratures and luninosities were 26 million K and 80 thousand Lsub solar for the 10 km study and 5.3 millison and 600 Lsub solar for the 20 km study. Hydrodynamic expansion on the 10 km neutron star produced a precursor lasting about one ten thousandth seconds

    Numerical simulation of the magnetospheric gate model for X-ray bursters

    Get PDF
    A Lagrangian, fully implicit, one dimensional hydrodynamic computer code was used to investigate the evolution of a gas cloud impacting the surface of a 20 km, 1 Msub solar neutron star. This gas is initially at rest with respect to the surface of the neutron star, extends to 185 km above the surface, and is optically thick. The infall results in a burst which lasts about 0.1 seconds and reached a peak luminosity and effective temperature of 240,000 Lsub solar and 9 million; respectively. The burst was followed by a phase of oscillations with a period 0.2 seconds

    Hiding the complexity: building a distributed ATLAS Tier-2 with a single resource interface using ARC middleware

    Get PDF
    Since their inception, Grids for high energy physics have found management of data to be the most challenging aspect of operations. This problem has generally been tackled by the experiment's data management framework controlling in fine detail the distribution of data around the grid and the careful brokering of jobs to sites with co-located data. This approach, however, presents experiments with a difficult and complex system to manage as well as introducing a rigidity into the framework which is very far from the original conception of the grid.<p></p> In this paper we describe how the ScotGrid distributed Tier-2, which has sites in Glasgow, Edinburgh and Durham, was presented to ATLAS as a single, unified resource using the ARC middleware stack. In this model the ScotGrid 'data store' is hosted at Glasgow and presented as a single ATLAS storage resource. As jobs are taken from the ATLAS PanDA framework, they are dispatched to the computing cluster with the fastest response time. An ARC compute element at each site then asynchronously stages the data from the data store into a local cache hosted at each site. The job is then launched in the batch system and accesses data locally.<p></p> We discuss the merits of this system compared to other operational models and consider, from the point of view of the resource providers (sites), and from the resource consumers (experiments); and consider issues involved in transitions to this model

    A Spectroscopic Survey of Subarcsecond Binaries in the Taurus-Auriga Dark Cloud with the Hubble Space Telescope

    Full text link
    We report the results of a spectroscopic survey of 20 close T Tauri binaries in the Taurus-Auriga dark cloud where the separations between primaries and their secondaries are less than the typical size of a circumstellar disk around a young star. Analysis of low-resolution and medium-resolution STIS spectra yields the stellar luminosities, reddenings, ages, masses, mass accretion rates, IR excesses, and emission line luminosities for each star in each pair. We examine the ability of IR color excesses, H-alpha equivalent widths, [O I] emission, and veiling to distinguish between weak emission and classical T Tauri stars. Four pairs have one cTTs and one wTTs; the cTTs is the primary in three of these systems. This frequency of mixed pairs among the close T Tauri binaries is similar to the frequency of mixed pairs in wider young binaries. Extinctions within pairs are usually similar; however, the secondary is more heavily reddened than the primary in some systems, where it may be viewed through the primary's disk. Mass accretion rates of primaries and secondaries are strongly correlated, and H-alpha luminosities, IR excesses, and ages also correlate within pairs. Primaries tend to have somewhat larger accretion rates than their secondaries do, and are typically slightly older than their secondaries according to three different sets of modern pre-main-sequence evolutionary tracks. Age differences for XZ Tau and FS Tau, systems embedded in reflection nebulae, are striking; the secondary in each pair is less massive but more luminous than the primary. The stellar masses of the UY Aur and GG Tau binaries measured from their rotating molecular disks are about 30% larger than the masses inferred from the spectra and evolutionary tracks

    Correlation between the spatial distribution of circumstellar disks and massive stars in the young open cluster NGC 6611. II: Cluster members selected with Spitzer/IRAC

    Full text link
    Context: the observations of the proplyds in the Orion Nebula Cluster, showing clear evidence of ongoing photoevaporation, have provided a clear proof about the role of the externally induced photoevaporation in the evolution of circumstellar disks. NGC 6611 is an open cluster suitable to study disk photoevaporation, thanks to its large population of massive members and of stars with disk. In a previous work, we obtained evidence of the influence of the strong UV field generated by the massive cluster members on the evolution of disks around low-mass Pre-Main Sequence members. That work was based on a multi-band BVIJHK and X-ray catalog purposely compiled to select the cluster members with and without disk. Aims: in this paper we complete the list of candidate cluster members, using data at longer wavelengths obtained with Spitzer/IRAC, and we revisit the issue of the effects of UV radiation on the evolution of disks in NGC 6611. Methods: we select the candidate members with disks of NGC 6611, in a field of view of 33'x34' centered on the cluster, using IRAC color-color diagrams and suitable reddening-free color indices. Besides, using the X-ray data to select Class III cluster members, we estimate the disks frequency vs. the intensity of the incident radiation emitted by massive members. Results: we identify 458 candidate members with circumstellar disks, among which 146 had not been revealed in our previous work. Comparing of the various color indices we used to select the cluster members with disk, we claim that they detect the excesses due to the emission of the same physical region of the disk: the inner rim at the dust sublimation radius. Our new results confirm that UV radiation from massive stars affects the evolution of nearby circumstellar disks.Comment: Accepted for publication at Astronomy & Astrophysic

    Observations and simulations of recurrent novae: U Sco and V394 CrA

    Get PDF
    Observations and analysis of the Aug. 1987 outburst of the recurrent nova V394 CrA are presented. This nova is extremely fast and its outburst characteristics closely resemble those of the recurrent nova U Sco. Hydrodynamic simulations of the outbursts of recurrent novae were performed. Results as applied to the outbursts of V394 CrA and U Sco are summarized

    The Discovery of a Companion to the Lowest Mass White Dwarf

    Get PDF
    We report the detection of a radial velocity companion to SDSS J091709.55+463821.8, the lowest mass white dwarf currently known with M~0.17Msun. The radial velocity of the white dwarf shows variations with a semi-amplitude of 148.8 km/s and a period of 7.5936 hours, which implies a companion mass of M > 0.28Msun. The lack of evidence of a companion in the optical photometry forces any main-sequence companion to be smaller than 0.1Msun, hence a low mass main sequence star companion is ruled out for this system. The companion is most likely another white dwarf, and we present tentative evidence for an evolutionary scenario which could have produced it. However, a neutron star companion cannot be ruled out and follow-up radio observations are required to search for a pulsar companion.Comment: ApJ, in press. See the Press Release at http://www.cfa.harvard.edu/press/2007/pr200708.htm

    A Hybrid N-body--Coagulation Code for Planet Formation

    Full text link
    We describe a hybrid algorithm to calculate the formation of planets from an initial ensemble of planetesimals. The algorithm uses a coagulation code to treat the growth of planetesimals into oligarchs and explicit N-body calculations to follow the evolution of oligarchs into planets. To validate the N-body portion of the algorithm, we use a battery of tests in planetary dynamics. Several complete calculations of terrestrial planet formation with the hybrid code yield good agreement with previously published calculations. These results demonstrate that the hybrid code provides an accurate treatment of the evolution of planetesimals into planets.Comment: Astronomical Journal, accepted; 33 pages + 11 figure

    Random on-board pixel sampling (ROPS) X-ray Camera

    Full text link
    Recent advances in compressed sensing theory and algorithms offer new possibilities for high-speed X-ray camera design. In many CMOS cameras, each pixel has an independent on-board circuit that includes an amplifier, noise rejection, signal shaper, an analog-to-digital converter (ADC), and optional in-pixel storage. When X-ray images are sparse, i.e., when one of the following cases is true: (a.) The number of pixels with true X-ray hits is much smaller than the total number of pixels; (b.) The X-ray information is redundant; or (c.) Some prior knowledge about the X-ray images exists, sparse sampling may be allowed. Here we first illustrate the feasibility of random on-board pixel sampling (ROPS) using an existing set of X-ray images, followed by a discussion about signal to noise as a function of pixel size. Next, we describe a possible circuit architecture to achieve random pixel access and in-pixel storage. The combination of a multilayer architecture, sparse on-chip sampling, and computational image techniques, is expected to facilitate the development and applications of high-speed X-ray camera technology.Comment: 9 pages, 6 figures, Presented in 19th iWoRI
    corecore