18 research outputs found

    ATP and its metabolite adenosine cooperatively upregulate the antigen-presenting molecules on dendritic cells leading to IFN-gamma production by T cells

    Get PDF
    Dendritic cells (DCs) present foreign antigens to T cells via the major histocompatibility complex (MHC), thereby inducing acquired immune responses. ATP accumulates at sites of inflammation or in tumor tissues, which triggers local inflammatory responses. However, it remains to be clarified how ATP modulates the functions of DCs. In this study, we investigated the effects of extracellular ATP on mouse bone marrow- derived dendritic cells (BMDCs) as well as the potential for subsequent T cell activation. We found that high concentrations of ATP (1 mM) upregulated the cell surface expression levels of MHC-I, MHC-II, and co-stimulatory molecules CD80 and CD86 but not those of co-inhibitory molecules PD-L1 and PD-L2 in BMDCs. Increased surface expression of MHC-I, MHC-II, CD80, and CD86 was inhibited by a pan-P2 receptor antagonist. In addition, the upregulation of MHC-I and MHC-II expression was inhibited by an adenosine P1 receptor antagonist and by inhibitors of CD39 and CD73, which metabolize ATP to adenosine. These results suggest that adenosine is required for the ATP-induced upregulation of MHC-I and MHC-II. In the mixed leukocyte reaction assay, ATP-stimulated BMDCs activated CD4 and CD8T cells and induced interferon-gamma (IFN-gamma) production by these T cells. Collectively, these results suggest that high concentrations of extracellular ATP upregulate the expression of antigenpresenting and co-stimulatory molecules but not that of coinhibitory molecules in BMDCs. Cooperative stimulation of ATP and its metabolite adenosine was required for the upregulation of MHC-I and MHC-II. These ATP-stimulated BMDCs induced the activation of IFN-gamma-producing T cells upon antigen presentation

    Ligation of MHC Class II Induces PKC-Dependent Clathrin-Mediated Endocytosis of MHC Class II

    Get PDF
    In addition to antigen presentation to CD4(+)T cells, aggregation of cell surface major histocompatibility complex class II (MHC-II) molecules induces signal transduction in antigen presenting cells that regulate cellular functions. We previously reported that crosslinking of MHC-II induced the endocytosis of MHC-II, which was associated with decreased surface expression levels in murine dendritic cells (DCs) and resulted in impaired activation of CD4(+)T cells. However, the downstream signal that induces MHC-II endocytosis remains to be elucidated. In this study, we found that the crosslinking of MHC-II induced intracellular Ca(2+)mobilization, which was necessary for crosslinking-induced MHC-II endocytosis. We also found that these events were suppressed by inhibitors of Syk and phospholipase C (PLC). Treatments with a phorbol ester promoted MHC-II endocytosis, whereas inhibitors of protein kinase C (PKC) suppressed crosslinking-induced endocytosis of MHC-II. These results suggest that PKC could be involved in this process. Furthermore, crosslinking-induced MHC-II endocytosis was suppressed by inhibitors of clathrin-dependent endocytosis. Our results indicate that the crosslinking of MHC-II could stimulate Ca(2+)mobilization and induce the clathrin-dependent endocytosis of MHC-II in murine DCs

    Manipulation of Signaling Thresholds in “Engineered Stem Cell Niches” Identifies Design Criteria for Pluripotent Stem Cell Screens

    Get PDF
    In vivo, stem cell fate is regulated by local microenvironmental parameters. Governing parameters in this stem cell niche include soluble factors, extra-cellular matrix, and cell-cell interactions. The complexity of this in vivo niche limits analyses into how individual niche parameters regulate stem cell fate. Herein we use mouse embryonic stem cells (mESC) and micro-contact printing (µCP) to investigate how niche size controls endogenous signaling thresholds. µCP is used to restrict colony diameter, separation, and degree of clustering. We show, for the first time, spatial control over the activation of the Janus kinase/signal transducer and activator of transcription pathway (Jak-Stat). The functional consequences of this niche-size-dependent signaling control are confirmed by demonstrating that direct and indirect transcriptional targets of Stat3, including members of the Jak-Stat pathway and pluripotency-associated genes, are regulated by colony size. Modeling results and empirical observations demonstrate that colonies less than 100 µm in diameter are too small to maximize endogenous Stat3 activation and that colonies separated by more than 400 µm can be considered independent from each other. These results define parameter boundaries for the use of ESCs in screening studies, demonstrate the importance of context in stem cell responsiveness to exogenous cues, and suggest that niche size is an important parameter in stem cell fate control

    Dissecting the Role of the Stem Cell Niche in Driving Conversion Between Pluripotent States

    No full text
    Pluripotency is defined as the ability to develop into all tissues of the adult organism. In vivo, pluripotency exists only transiently in early embryogenesis. Despite its transience, remarkably, the pluripotent state can be stably maintained in vitro. While originally thought to exist stably in one state, pluripotency has recently been demonstrated to exist in at least two states; states defined by their distinct transcriptional networks and the extrinsic signals that maintain these networks. These extrinsic cues are provided either exogenously or endogenously in an autocrine or paracrine manner by the local microenvironment, or niche, composed of a heterogenous population of neighbouring cells. One state of pluripotency represents an earlier stage in development (early-stage pluripotency) than the other (primed pluripotency). While the characteristics of and the transitions between the two states are becoming better defined, the specific role of the niche remains poorly understood. Using mouse embryonic stem cells (mESCs) and mouse epiblast stem cells (EpiSCs) as models of early-stage and primed pluripotency, respectively, we demonstrate the influence of the stem cell niche in driving the reversion of EpiSCs.Ph.D

    Local BMP-SMAD1 Signaling Increases LIF Receptor-Dependent STAT3 Responsiveness and Primed-to-Naive Mouse Pluripotent Stem Cell Conversion Frequency

    No full text
    Conversion of EpiSCs to naive ESCs is a rare event that is driven by the reestablishment of the naive transcription factor network. In mice, STAT3 activation is sufficient to drive conversion of EpiSCs to the naive pluripotent stem cell (PSC) state. However, the lack of responsiveness of EpiSCs to LIF presents a bottleneck in this conversion process. Here, we demonstrate that local accumulation of BMP-SMAD1 signaling, in cooperation with GP130 ligands, enhances the recovery of LIF responsiveness by directly controlling transcription of the LIF receptor (Lif-r). Addition of BMP and LIF to EpiSCs increases both LIF responsiveness and conversion frequencies to naive PSCs. Mechanistically, we show that the transcriptional cofactor P300 plays a critical role by mediating complex formation between STAT3 and SMAD1. This demonstration of how the local microenvironment or stem cell niche reactivates dormant signaling responsiveness and developmental potential may be applicable to other stem cell niche-containing systems

    Detecting Object-Level Scene Changes in Images with Viewpoint Differences Using Graph Matching

    No full text
    We developed a robust object-level change detection method that could capture distinct scene changes in an image pair with viewpoint differences. To achieve this, we designed a network that could detect object-level changes in an image pair. In contrast to previous studies, we considered the change detection task as a graph matching problem for two object graphs that were extracted from each image. By virtue of this, the proposed network more robustly detected object-level changes with viewpoint differences than existing pixel-level approaches. In addition, the network did not require pixel-level change annotations, which have been required in previous studies. Specifically, the proposed network extracted the objects in each image using an object detection module and then constructed correspondences between the objects using an object matching module. Finally, the network detected objects that appeared or disappeared in a scene using the correspondences that were obtained between the objects. To verify the effectiveness of the proposed network, we created a synthetic dataset of images that contained object-level changes. In experiments on the created dataset, the proposed method improved the F1 score of conventional methods by more than 40%. Our synthetic dataset will be available publicly online
    corecore