13 research outputs found
The phylogeny of Turnip mosaic virus ; comparisons of 38 genomic sequences reveal a Eurasian origin and a recent emergence in east Asia
The genomes of a representative world-wide collection of 32 Turnip mosaic virus (TuMV) isolates were sequenced and these, together with six previously reported sequences, were analysed. At least one-fifth of the sequences were recombinant. In phylogenetic analyses, using genomic sequences of Japanese yam mosaic virus as an outgroup, the TuMV sequences that did not show clear recombination formed a monophyletic group with four well-supported lineages. These groupings correlated with differences in pathogenicity and provenance; the sister group to all others was of Eurasian B-strain isolates from non-brassicas, and probably represents the ancestral TuMV population, and the most recently 'emerged' branch of the population was probably that of the BR-strain isolates found only in east Asia. Eight isolates, all from east Asia, were clear recombinants, probably the progeny of recent recombination events, whereas a similar number, from other parts of the world, were seemingly older recombinants. This difference indicates that the presence of clear recombinants in a subpopulation may be a molecular signature of a recent 'emergence'
Differentiation of “Candidatus Liberibacter asiaticus” Isolates by Variable-Number Tandem-Repeat Analysis ▿
Four highly polymorphic simple sequence repeat (SSR) loci were selected and used to differentiate 84 Japanese isolates of “Candidatus Liberibacter asiaticus.” The Nei's measure of genetic diversity values for these four SSRs ranged from 0.60 to 0.86. The four SSR loci were also highly polymorphic in four isolates from Taiwan and 12 isolates from Indonesia
Comparisons of the genetic structure of populations of Turnip mosaic virus in West and East Eurasia
The genetic structure of populations of Turnip mosaic virus in Eurasia was assessed by making host range and gene sequence comparisons of 142 isolates. Most isolates collected in West Eurasia infected Brassica plants whereas those from East Eurasia infected both Brassica and Raphanus plants. Analyses of recombination sites (RSs) in five regions of the genome (one third of the full sequence) showed that the protein 1 (P1 gene) had recombined more frequently than the other gene regions in both subpopulations, but that the RSs were located in different parts of the genomes of the subpopulations. Estimates of nucleotide diversity showed that the West Eurasian subpopulation was more diverse than the East Eurasian subpopulation, but the Asian-BR group of the genes from the latter subpopulation had a greater nonsynonymous/synonymous substitution ratio, especially in the P1, viral genome-linked protein (VPg) and nuclear inclusion a proteinase (NIa-Pro) genes. These subpopulations seem to have evolved independently from the ancestral European population, and their genetic structure probably reflects founder effects
Patterns of recombination in turnip mosaic virus genomic sequences indicate hotspots of recombination
Potyviruses have variable single-stranded RNA genomes and many show clear evidence of recombination. This report studied the distribution of recombination sites in the genomes of 92 isolates of the potyvirus Turnip mosaic virus (TuMV); 42 came from the international gene sequence databases and an additional 50 complete genomic sequences were generated from field samples collected in Europe and Asia. The sequences were examined for evidence of recombination using seven different sequence comparison methods and the exact position of each site was confirmed by sequence composition analysis. Recombination sites were found throughout the genomes, except in the small 6K1 protein gene, and only 24 of the genomes (26 %) showed no evidence of recombination. Statistically significant clusters of recombination sites were found in the P1 gene and in the Cl/6K2/VPg gene region. Most recombination sites were bordered by an upstream (5′) region of GC-rich and downstream (3′) region of AU-rich sequence of a similar length. Correlations between the presence and type of recombination site and provenance, host type and phylogenetic relationships are discussed, as is the role of recombination in TuMV evolution