208 research outputs found

    Genetic Analysis Workshop 17 mini-exome simulation

    Get PDF
    The data set simulated for Genetic Analysis Workshop 17 was designed to mimic a subset of data that might be produced in a full exome screen for a complex disorder and related risk factors in order to permit workshop participants to investigate issues of study design and statistical genetic analysis. Real sequence data from the 1000 Genomes Project formed the basis for simulating a common disease trait with a prevalence of 30% and three related quantitative risk factors in a sample of 697 unrelated individuals and a second sample of 697 individuals in large, extended pedigrees. Called genotypes for 24,487 autosomal markers assigned to 3,205 genes and simulated affection status, quantitative traits, age, sex, pedigree relationships, and cigarette smoking were provided to workshop participants. The simulating model included both common and rare variants with minor allele frequencies ranging from 0.07% to 25.8% and a wide range of effect sizes for these variants. Genotype-smoking interaction effects were included for variants in one gene. Functional variants were concentrated in genes selected from specific biological pathways and were selected on the basis of the predicted deleteriousness of the coding change. For each sample, unrelated individuals and family, 200 replicates of the phenotypes were simulated

    Genetic basis of neurocognitive decline and reduced white-matter integrity in normal human brain aging

    Get PDF
    Identification of genes associated with brain aging should markedly improve our understanding of the biological processes that govern normal age-related decline. However, challenges to identifying genes that facilitate successful brain aging are considerable, including a lack of established phenotypes and difficulties in modeling the effects of aging per se, rather than genes that influence the underlying trait. In a large cohort of randomly selected pedigrees (n = 1,129 subjects), we documented profound aging effects from young adulthood to old age (18-83 y) on neurocognitive ability and diffusion-based white-matter measures. Despite significant phenotypic correlation between white-matter integrity and tests of processing speed, working memory, declarative memory, and intelligence, no evidence for pleiotropy between these classes of phenotypes was observed. Applying an advanced quantitative gene-by-environment interaction analysis where age is treated as an environmental factor, we demonstrate a heritable basis for neurocognitive deterioration as a function of age. Furthermore, by decomposing gene-by-aging (G × A) interactions, we infer that different genes influence some neurocognitive traits as a function of age, whereas other neurocognitive traits are influenced by the same genes, but to differential levels, from young adulthood to old age. In contrast, increasing white-matter incoherence with age appears to be nongenetic. These results clearly demonstrate that traits sensitive to the genetic influences on brain aging can be identified, a critical first step in delineating the biological mechanisms of successful aging

    Exome Sequencing Identifies Genetic Variants Associated with Circulating Lipid Levels in Mexican Americans: The Insulin Resistance Atherosclerosis Family Study (IRASFS)

    Get PDF
    Genome-wide association studies have identified numerous variants associated with lipid levels; yet, the majority are located in non-coding regions with unclear mechanisms. In the Insulin Resistance Atherosclerosis Family Study (IRASFS), heritability estimates suggest a strong genetic basis: low-density lipoprotein (LDL, h2 = 0.50), high-density lipoprotein (HDL, h2 = 0.57), total cholesterol (TC, h2 = 0.53), and triglyceride (TG, h2 = 0.42) levels. Exome sequencing of 1,205 Mexican Americans (90 pedigrees) from the IRASFS identified 548,889 variants and association and linkage analyses with lipid levels were performed. One genome-wide significant signal was detected in APOA5 with TG (rs651821, PTG = 3.67 × 10−10, LODTG = 2.36, MAF = 14.2%). In addition, two correlated SNPs (r2 = 1.0) rs189547099 (PTG = 6.31 × 10−08, LODTG = 3.13, MAF = 0.50%) and chr4:157997598 (PTG = 6.31 × 10−08, LODTG = 3.13, MAF = 0.50%) reached exome-wide significance (P \u3c 9.11 × 10−08). rs189547099 is an intronic SNP in FNIP2 and SNP chr4:157997598 is intronic in GLRB. Linkage analysis revealed 46 SNPs with a LOD \u3e 3 with the strongest signal at rs1141070 (LODLDL = 4.30, PLDL = 0.33, MAF = 21.6%) in DFFB. A total of 53 nominally associated variants (P \u3c 5.00 × 10−05, MAF ≥ 1.0%) were selected for replication in six Mexican-American cohorts (N = 3,280). The strongest signal observed was a synonymous variant (rs1160983, PLDL = 4.44 × 10−17, MAF = 2.7%) in TOMM40. Beyond primary findings, previously reported lipid loci were fine-mapped using exome sequencing in IRASFS. These results support that exome sequencing complements and extends insights into the genetics of lipid levels

    The genetic determinants of recurrent somatic mutations in 43,693 blood genomes

    Get PDF
    Nononcogenic somatic mutations are thought to be uncommon and inconsequential. To test this, we analyzed 43,693 National Heart, Lung and Blood Institute Trans-Omics for Precision Medicine blood whole genomes from 37 cohorts and identified 7131 non-missense somatic mutations that are recurrently mutated in at least 50 individuals. These recurrent non-missense somatic mutations (RNMSMs) are not clearly explained by other clonal phenomena such as clonal hematopoiesis. RNMSM prevalence increased with age, with an average 50-year-old having 27 RNMSMs. Inherited germline variation associated with RNMSM acquisition. These variants were found in genes involved in adaptive immune function, proinflammatory cytokine production, and lymphoid lineage commitment. In addition, the presence of eight specific RNMSMs associated with blood cell traits at effect sizes comparable to Mendelian genetic mutations. Overall, we found that somatic mutations in blood are an unexpectedly common phenomenon with ancestry-specific determinants and human health consequences

    The genetic basis of the comorbidity between cannabis use and major depression

    Get PDF
    Background and aims—While the prevalence of major depression is elevated amongst cannabis users, the role of genetics in this pattern of comorbidity is not clear. This study aimed to estimate the heritability of cannabis use and major depression, quantify the genetic overlap between these two traits, and localize regions of the genome that segregate in families with cannabis use and major depression. Design—Family-based univariate and bivariate genetic analysis. Setting—San Antonio, Texas, USA Participants—Genetics of Brain Structure and Function study (GOBS) participants: 1,284 Mexican-Americans from 75 large multi-generation families and an additional 57 genetically unrelated spouses. Measurements—Phenotypes of lifetime history of cannabis use and major depression, measured using the semi-structured MINI-Plus interview. Genotypes measured using ~1M single nucleotide polymorphisms (SNPs) on Illumina BeadChips. A sub-selection of these SNPs were used to build multipoint identity-by-descent matrices for linkage analysis. Findings—Both cannabis use (h2=0.614, p=1.00×10−6, SE=0.151) and major depression (h2=0.349, p=1.06×10−5, SE=0.100) are heritable traits, and there is significant genetic correlation between the two (ρg=0.424, p=0.0364, SE=0.195). Genome-wide linkage scans identify a significant univariate linkage peak for major depression on chromosome 22 (LOD=3.144 at 2cM), with a suggestive peak for cannabis use on chromosome 21 (LOD=2.123 at 37cM). A significant pleiotropic linkage peak influencing both cannabis use and major depression was identified on chromosome 11, using a bivariate model (LOD=3.229 at 112cM). Follow-up of this pleiotropic signal identified a SNP 20kb upstream of NCAM1 (rs7932341) that shows significant bivariate association (p=3.10×10−5). However this SNP is rare (7 minor allele carriers) and does not drive the linkage signal observed. Conclusions—There appears to be significant genetic overlap between cannabis use and major depression among Mexican-Americans, a pleiotropy that appears to be localized to a region on chromosome 11q23 that has been previously linked to these phenotypes

    Genome-wide significant loci for addiction and anxiety

    Get PDF
    Background Psychiatric comorbidity is common among individuals with addictive disorders, with patients frequently suffering from anxiety disorders. While the genetic architecture of comorbid addictive and anxiety disorders remains unclear, elucidating the genes involved could provide important insights into the underlying etiology. Methods Here we examine a sample of 1284 Mexican-Americans from randomly selected extended pedigrees. Variance decomposition methods were used to examine the role of genetics in addiction phenotypes (lifetime history of alcohol dependence, drug dependence or chronic smoking) and various forms of clinically relevant anxiety. Genome-wide univariate and bivariate linkage scans were conducted to localize the chromosomal regions influencing these traits. Results Addiction phenotypes and anxiety were shown to be heritable and univariate genome-wide linkage scans revealed significant quantitative trait loci for drug dependence (14q13.2-q21.2, LOD = 3.322) and a broad anxiety phenotype (12q24.32-q24.33, LOD = 2.918). Significant positive genetic correlations were observed between anxiety and each of the addiction subtypes (ρg = 0.550–0.655) and further investigation with bivariate linkage analyses identified significant pleiotropic signals for alcohol dependence-anxiety (9q33.1-q33.2, LOD = 3.054) and drug dependence-anxiety (18p11.23-p11.22, LOD = 3.425). Conclusions This study confirms the shared genetic underpinnings of addiction and anxiety and identifies genomic loci involved in the etiology of these comorbid disorders. The linkage signal for anxiety on 12q24 spans the location of TMEM132D, an emerging gene of interest from previous GWAS of anxiety traits, whilst the bivariate linkage signal identified for anxiety-alcohol on 9q33 peak coincides with a region where rare CNVs have been associated with psychiatric disorders. Other signals identified implicate novel regions of the genome in addiction genetics

    P-selectin Expression Tracks Cerebral Atrophy in Mexican-Americans

    Get PDF
    Background and Purpose: We hypothesized that the P-selectin (SELP) gene, localized to a region on chromosome 1q24, pleiotropically contributes to increased blood pressure and cerebral atrophy. We tested this hypothesis by performing genetic correlation analyses for 13 mRNA gene expression measures from P-selectin and 11 other genes located in 1q24 region and three magnetic resonance imaging derived indices of cerebral integrity. Methods: The subject pool consisted of 369 (219F; aged 28–85, average = 47.1 ± 12.7 years) normally aging, community-dwelling members of large extended Mexican-American families. Genetic correlation analysis decomposed phenotypic correlation coefficients into genetic and environmental components among 13 leukocyte-based mRNA gene expressions and three whole-brain and regional measurements of cerebral integrity: cortical gray matter thickness, fractional anisotropy of cerebral white matter, and the volume of hyperintensive WM lesions. Results: From the 13 gene expressions, significant phenotypic correlations were only found for the P- and L-selectin expression levels. Increases in P-selectin expression levels tracked with decline in cerebral integrity while the opposite trend was observed for L-selectin expression. The correlations for the P-selectin expression were driven by shared genetic factors, while the correlations with L-selectin expression were due to shared environmental effects. Conclusion: This study demonstrated that P-selectin expression shared a significant variance with measurements of cerebral integrity and posits elevated P-selectin expression levels as a potential risk factor of hypertension-related cerebral atrophy

    Data for Genetic Analysis Workshop 18: human whole genome sequence, blood pressure, and simulated phenotypes in extended pedigrees

    Get PDF
    Genetic Analysis Workshop 18 (GAW18) focused on identification of genes and functional variants that influence complex phenotypes in human sequence data. Data for the workshop were donated by the T2D-GENES Consortium and included whole genome sequences for odd-numbered autosomes in 464 key individuals selected from 20 Mexican American families, a dense set of single-nucleotide polymorphisms in 959 individuals in these families, and longitudinal data on systolic and diastolic blood pressure measured at 1-4 examinations over a period of 20 years. Simulated phenotypes were generated based on the real sequence data and pedigree structures. In the design of the simulation model, gene expression measures from the San Antonio Family Heart Study (not distributed as part of the GAW18 data) were used to identify genes whose mRNA levels were correlated with blood pressure. Observed variants within these genes were designated as functional in the GAW18 simulation if they were nonsynonymous and predicted to have deleterious effects on protein function or if they were noncoding and associated with mRNA levels. Two simulated longitudinal phenotypes were modeled to have the same trait distributions as the real systolic and diastolic blood pressure data, with effects of age, sex, and medication use, including a genotype-medication interaction. For each phenotype, more than 1000 sequence variants in more than 200 genes present on the odd-numbered autosomes individually explained less than 0.01-2.78% of phenotypic variance. Cumulatively, variants in the most influential gene explained 7.79% of trait variance. An additional simulated phenotype, Q1, was designed to be correlated among family members but to not be associated with any sequence variants. Two hundred replicates of the phenotypes were simulated, with each including data for 849 individuals

    Genome-wide Linkage on Chromosome 10q26 for a Dimensional Scale of Major Depression

    Get PDF
    Major depressive disorder (MDD) is a common and potentially life-threatening mood disorder. Identifying genetic markers for depression might provide reliable indicators of depression risk, which would, in turn, substantially improve detection, enabling earlier and more effective treatment. The aim of this study was to identify rare variants for depression, modeled as a continuous trait, using linkage and post-hoc association analysis. The sample comprised 1221 Mexican–American individuals from extended pedigrees. A single dimensional scale of MDD was derived using confirmatory factor analysis applied to all items from the Past Major Depressive Episode section of the Mini-International Neuropsychiatric Interview. Scores on this scale of depression were subjected to linkage analysis followed by QTL region-specific association analysis. Linkage analysis revealed a single genome-wide significant QTL (LOD=3.43) on 10q26.13, QTL-specific association analysis conducted in the entire sample revealed a suggestive variant within an intron of the gene LHPP (rs11245316, p=7.8×10−04; LD-adjusted Bonferroni-corrected p=8.6×10−05). This region of the genome has previously been implicated in the etiology of MDD; the present study extends our understanding of the involvement of this region by highlighting a putative gene of interest (LHPP)
    corecore