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Identification of genes associated with brain aging should mark-
edly improve our understanding of the biological processes that
govern normal age-related decline. However, challenges to iden-
tifying genes that facilitate successful brain aging are consider-
able, including a lack of established phenotypes and difficulties
in modeling the effects of aging per se, rather than genes that
influence the underlying trait. In a large cohort of randomly
selected pedigrees (n = 1,129 subjects), we documented profound
aging effects from young adulthood to old age (18–83 y) on neuro-
cognitive ability and diffusion-based white-matter measures. De-
spite significant phenotypic correlation between white-matter
integrity and tests of processing speed, working memory, declar-
ative memory, and intelligence, no evidence for pleiotropy be-
tween these classes of phenotypes was observed. Applying an
advanced quantitative gene-by-environment interaction analysis
where age is treated as an environmental factor, we demonstrate
a heritable basis for neurocognitive deterioration as a function of
age. Furthermore, by decomposing gene-by-aging (G × A) interac-
tions, we infer that different genes influence some neurocognitive
traits as a function of age, whereas other neurocognitive traits are
influenced by the same genes, but to differential levels, from
young adulthood to old age. In contrast, increasing white-matter
incoherence with age appears to be nongenetic. These results
clearly demonstrate that traits sensitive to the genetic influences
on brain aging can be identified, a critical first step in delineating
the biological mechanisms of successful aging.

neurocognition | diffusion tensor imaging | fractional anisotropy |
genetic correlation | gene x environment interaction

Population projections suggest for the first time in human
history there will be more individuals over the age of 65 than

below the age of 14 by 2050 (1). This milestone reflects the
dramatic increase of the average lifespan of people worldwide,
rather than a reduction in the total number of children being
born. Indeed, 25% of the US population is expected to be over
the age of 60 midway through this century (1). The implications
of our aging population are substantial, because aging is asso-
ciated with decreased mental and physical ability coupled with
increased health care utilization. Thus, there is considerable in-
terest in delineating the biological mechanisms that influence
age-related changes to facilitate successful aging (2), defined as
avoidance of disease or disability, maintaining good physical and
cognitive function, and engagement in social and productive
activities. Because the brain appears to play a pivotal role in
aging biology (3), one promising strategy is to define measures of
brain structure and function that index concomitant aging out-
comes (4). The observation that many measures of brain aging
are heritable and can be localized to specific genomic regions (6)
indicates that genetic factors play a crucial role in the brain’s
ability to either prosper or deteriorate with age. The identifica-
tion of successful brain aging genes should provide important

insights into the biological mechanisms that foster prolonged
vitality. Such insights should lead to enhanced prediction models
and potential interventions that could improve the quality of life
of older individuals. Unfortunately, the challenges to identifying
brain aging genes are considerable and include a lack of estab-
lished phenotypes (5) and difficulties in modeling the effects of
aging that are at least partially independent of the underlying
trait (e.g., identifying genes associated with immune function
generally rather than those associated with the ability to ward off
infection with age).
Neurocognitive measures are important indices of brain aging

because processing speed, memory, and executive function tests
are reliable, heritable, and dramatically influenced by normal
and pathological aging (6, 7). Therefore, identifying genetic
factors associated with age-related cognitive decline could have
a profound impact on our understanding of the underlying bi-
ology that influences brain function over the lifespan (8). Simi-
larly, in vivo measurements of white-matter integrity provided by
diffusion tensor imaging (DTI) are fitting brain-aging pheno-
types because these heritable traits are particularly sensitive to
healthy and pathological aging (9, 10). Indeed, changes in
fractional anisotropy (FA) as indexed by DTI appear to be
among the most sensitive neuroimaging measures of the de-
generation observed in normal and abnormal aging (11) and of
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age-related neurocognitive decline (12). However, reports asso-
ciating white-matter integrity and cognitive aging are inconsistent,
with some suggesting localized effects (13–17) and others point-
ing to global white-matter changes as the best predictors of age-
related cognitive changes (18). Evidence for pleiotropy between
neurocognitive and white-matter traits is sparse (19, 20), raising
the possibility that age-related declines in these two classes of
phenotypes may reflect independent genetic pathways. Regard-
less of whether they interact directly, neurocognitive performance
and white-matter measurements are powerful classes of phe-
notypes for the discovery of brain aging genes.
Because the incremental increase in age over time is not the

direct consequence of gene action, one can consider aging an
effect of the environment. In this context, aging can be modeled
as a gene-by-environment interaction (G × E). Generally, a sig-
nificant G × E interaction is evidence for a heritable basis of
a biological response to environmental change. A fundamental
advantage of focusing on the G × E interaction for modeling the
influence of genes on brain aging is that, given pedigree-based
sampling, the interaction can be evaluated even when direct
within-individual measurement of the trait’s response to aging is
not possible (21). Thus, a cross-sectional pedigree design that
models the observed correlations between individuals as a func-
tion of both biological relatedness and environmental similarity
enables testing of a gene-by-aging (G × A) interaction by ex-
amining heritable phenotypic change with advancing age be-
tween related individuals. In such a G × A analysis, the genetic
variance (σg2) of a given trait is allowed to vary with age, mod-
eling potential differences in the scale of gene action over time.
In addition, the genetic correlation between observations of
a trait at different ages (ρg), expected to be 1 in the absence of
age effects, may be a function of the difference in ages for any
pair of observations of related individuals, suggesting that the
relative effect sizes of the genes contributing to a trait vary with
age. Thus, in addition to providing an estimate of genetic influ-
ences on aging, a G × A analysis suggests whether this genetic
effect is likely due to fluctuations in the action of specific genes
(changes in σg2), variation in the exact genes influencing the trait
at different ages (changes in ρg), or both. Kent and coworkers
(22) recently used a similar analytic approach to identify over
600 lymphocyte-based RNA transcripts with significant G × A
interactions, defining candidate genes for biological aging.
In the current report, we modeled advancing age, from young

adulthood to old age, on cross-sectional measures of neuro-
cognitive function and white-matter integrity in large randomly
ascertained extended pedigrees. Our goals were to (i) document
age-related changes in these indices of successful brain aging, (ii)
further establish the heritability of these phenotypes, (iii) examine
phenotypic, genetic, and environmental correlations between these
classes of phenotypes, and (iv) determine if gene-by-aging inter-
actions influence neurocognition and white-matter integrity.

Results
Age Distribution. Some 1,129 individuals from randomly selected
extended pedigrees participated in the study. Age ranged from
18 to 83 y, with a mean of 44.17 (SD = 14.04; Fig. 1A). Average
education was 11.99 ± 2.86 y (range 0–25). Sixty-two percent of
the participants were female (n = 700). Ninety-eight percent of
the sample (n = 1,112) had neurocognitive data, and 768 had high-
quality DTI data (68%). In total, 751 individuals had both neu-
rocognitive and DTI data that passed quality control assessments.

Aging and Neurocognition. Older subjects performed significantly
worse than younger individuals on all neurocognitive measures
(Table 1 and Fig. 1B). Measures of processing speed (e.g., Digit–
Symbol Substitution and Trails A), working memory/executive
functioning (e.g., Letter–Number Span and Matrix Reasoning),
and declarative memory [California Verbal Learning Test (CVLT)
Learning and Penn Facial Memory Delay] showed particularly
substantial age-related declines. For example, average perfor-
mance on a computerized Digit–Symbol Substitution task (23),
a quintessential index of processing speed (24), decreased by 2.6
SDs from ages 18 to 83 (e.g., standardized β of −0.043, indicating
a performance reduction of 0.04 SD units each year over the 65-y
range of the sample).

Aging and White Matter. Tract-based FA measures uniformly de-
creased with advancing age (Table 1 and Figs. 1C and 2). Though
the effects of aging differed somewhat between tracts, the
overwhelming trend was a near-linear decrease in white-matter
coherence with aging. For example, global FA, the average FA
over the white-matter skeleton, decreased by 0.037 SD units per
year from young adulthood to old age.

Phenotypic Correlation Between Neurocognition and White-Matter
Integrity. Phenotypic correlations (ρp) between each neurocog-
nitive and white-matter measure were performed while allowing
for the effects of age and sex on individual-specific expected
means. Consistent with the literature (16, 25–27) and after con-
trolling for multiple testing, 33 significant correlations were ob-
served (Fig. 3 and Table S1). For example, global FA was sig-
nificantly correlated with Digit–Symbol Substitution (ρp = 0.11,
P = 0.001), Trails A (ρp = −0.11, P = 3 × 10−4), Semantic Flu-
ency (ρp = 0.11, P = 0.003), Letter–Number Span (ρp = 0.13, P =
3 × 10−4), Penn Facial Memory (ρp = 0.09, P = 0.001), and
Matrix Reasoning (ρp = 0.13, P = 0.002). Similarly, Digit–Symbol
Substitution was correlated with the splenium of the corpus
callosum (ρp = 0.10, P = 0.001), the anterior (ρp = 0.10, P = 0.002),
and posterior (ρp = 0.09, P = 0.003) limbs, and of internal capsule
and the anterior (ρp = 0.12, P = 1 × 10−4) and posterior (ρp = 0.13,
P = 3 × 10−4) corona radiate.

Fig. 1. The distribution of age (A) and its impact on neuro-
cognitive function (B) and DTI-derived measures of white-
matter integrity (C) in the Genetics of Brain Structure and
Function Study cohort (n = 1,129). (A) Histogram representing
the age distribution of study participants. Subjects’ ages
ranged from 18 to 83, with a mean of 45.82 ± 14.82. (B) Per-
formance after z-transformation on each of the 22 neuro-
cognitive variables stratified by the participant age. Though
there is some test-specific variability, the overwhelming trend is
for dramatic age-related declines across all neurocognitive
measures. (C) Comparable to B, but reflects 17 tract-based
measures of white-matter integrity changes with advancing age.
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Heritability. Heritability estimates for the neurocognitive and
white-matter measures are presented in Table 1 and Fig. 2; all
were significant, after controlling for multiple testing.

Genetic and Environmental Correlations Between Neurocognition and
White-Matter Integrity. Given that neurocognitive and FA mea-
sures are strongly influenced by aging and phenotypically cor-
related and heritable, bivariate correlations were performed to
determine if shared genetic or environmental factors influence
these traits. Focusing on traits with significant phenotypic cor-
relations, six environmental correlations were significant after
controlling for multiple testing (Table S1), including perfor-
mance on Trails A and global FA (ρe = −0.25, P = 0.001), the
splenium of the corpus callosum (ρe = −0.24, P = 0.004), the
retrolenticular part of internal capsule (ρe = −0.13, P = 0.004),
the posterior thalamic radiation (ρe = −0.18, P = 0.002), the
sagittal stratum (ρe = −0.25, P = 2 × 10−4), and the external
capsule (ρe = −0.30, P = 0.001). These correlations indicated
that common environmental factors were associated with wors-
ening cognitive performance and reduced white-matter integrity.

In contrast to environmental correlations, no genetic correla-
tion reached significance, suggesting that different genetic fac-
tors influence neurocognition and white-matter integrity. Among
neurocognitive traits phenotypically correlated with FA, Matrix
Reasoning had a trend-level genetic correlation with the anterior
limb of the internal capsule (ρg = 0.24, P = 0.06). Similarly, Penn
Facial Memory was weakly genetically associated with the sple-
nium of the corpus callosum (ρg = 0.11, P = 0.09). When ex-
amining all neurocognitive and white-matter parings, no genetic
correlation was significant after controlling for multiple testing
(Fig. 3), suggesting that neurocognition and FA-based white-
matter incidences do not share genetic influences.

G × A Interaction. Eight of the neurocognitive traits exhibited
significant G × A interactions (Table 1). Three neurocognitive
measures had significant genetic variance changes with advanc-
ing age (Digit–Symbol Substitution, Semantic Fluency, and Penn
Facial Memory), suggesting differential influences of the same
genetic factors across the lifespan. Heritability estimates for all
of these neurocognitive measures were predicted to decrease

Table 1. Heritability estimates, effects of age and sex, and G × A interactions

Trait Heritability h2 (P value) Age β (P value) Sex β (P value)
σg2 with age
γ (P value)

ρg with age
λ (P value)

Semantic Fluency 0.37 (2 × 10−11) −0.02 (1 × 10−16) −0.05 (0.419) −0.038 (0.003) 0.006 (0.318)
Verbal Fluency 0.50 (2 × 10−21) −0.02 (2 × 10−12) 0.04 (0.508) −0.006 (0.591) 0.022 (0.005)
Digit–Symbol Substation 0.52 (2 × 10−19) −0.04 (2 × 10−107) 0.10 (0.040) −0.037 (0.001) 0.009 (0.142)
Trails A 0.24 (2 × 10−6) 0.03 (7 × 10−45) −0.27 (2 × 10−6) 0.007 (0.607) 0.060 (0.002)
IP-CPT Hits 0.28 (8 × 10−7) −0.01 (0.016) −0.13 (0.038) −0.015 (0.497) 0.030 (0.042)
IP-CPT FA 0.32 (1 × 10−9) 0.02 (7 × 10−18) 0.22 (2 × 10−4) −0.021 (0.076) 0.028 (0.034)
Digit Span Forward 0.39 (6 × 10−13) −0.02 (7 × 10−30) −0.11 (0.048) −0.012 (0.255) 0.019 (0.033)
Digit Span Backward 0.37 (1 × 10−11) −0.02 (2 × 10−19) −0.07 (0.208) −0.003 (0.774) 0.008 (0.209)
Letter–Number 0.42 (3 × 10−14) −0.03 (7 × 10−48) 0.07 (0.213) −0.005 (0.565) 0.040 (2 × 10−4)
PCET Correct 0.33 (6 × 10−12) −0.03 (4 × 10−40) 0.02 (0.789) −0.003 (0.754) 0.001 (0.457)
Spatial Delayed Response 0.23 (8 × 10−6) −0.01 (7 × 10−7) −0.07 (0.216) −0.029 (0.192) 0.000 (0.500)
Trails B 0.49 (8 × 10−20) 0.03 (3 × 10−43) −0.17 (0.004) −0.011 (0.304) 0.009 (0.162)
CVLT Learning 0.36 (7 × 10−11) −0.02 (2 × 10−23) 0.50 (1 × 10−17) −0.017 (0.137) 0.023 (0.054)
CVLT Delay 0.32 (2 × 10−10) −0.02 (2 × 10−16) 0.46 (2 × 10−15) −0.016 (0.045) 0.055 (3 × 10−4)
CVLT Recognition 0.24 (2 × 10−5) −0.01 (4 × 10−11) 0.38 (5 × 10−11) −0.023 (0.297) 0.001 (0.470)
Facial Memory 0.36 (6 × 10−11) −0.01 (2 × 10−7) 0.30 (7 × 10−7) −0.047 (0.001) 0.000 (0.500)
Facial Memory Delay 0.44 (2 × 10−12) −0.01 (7 × 10−10) 0.27 (9 × 10−6) −0.022 (0.027) 0.028 (0.012)
Digit–Symbol Memory 0.38 (4 × 10−11) −0.03 (1 × 10−44) 0.07 (0.179) −0.013 (0.229) 0.000 (0.500)
Penn Emotion 0.25 (2 × 10−6) −0.03 (2 × 10−39) 0.13 (0.022) −0.007 (0.550) 0.057 (0.008)
Matrix Reasoning 0.55 (2 × 10−23) −0.04 (5 × 10−71) 0.04 (0.451) 0.001 (0.909) 0.003 (0.364)
Vocabulary 0.77 (8 × 10−43) −0.01 (9 × 10−11) −0.08 (0.166) 0.014 (0.034) 0.013 (0.001)
WASI IQ 0.77 (1 × 10−44) −0.01 (7 × 10−12) −0.05 (0.399) 0.012 (0.016) 0.009 (0.020)
Global FA 0.49 (7 × 10−10) −0.04 (1 × 10−56) −0.13 (0.035) 0.008 (0.457) 0.012 (0.174)
Corpus callosum body 0.45 (5 × 10−10) −0.03 (2 × 10−49) 0.03 (0.651) 0.002 (0.892) 0.010 (0.239)
Corpus callosum genu 0.59 (2 × 10−12) −0.04 (1 × 10−58) −0.09 (0.145) 0.001 (0.879) 0.023 (0.043)
Corpus callosum splenium 0.55 (2 × 10−12) −0.03 (6 × 10−38) −0.14 (0.032) 0.011 (0.266) 0.015 (0.140)
Anterior limb internal capsule 0.47 (1 × 10−8) −0.03 (5 × 10−30) −0.20 (0.002) 0.010 (0.512) 0.011 (0.211)
Posterior limb internal capsule 0.46 (1 × 10−7) −0.02 (5 × 10−22) −0.02 (0.821) 0.024 (0.307) 0.000 (0.500)
Retrolenticular internal capsule 0.27 (6 × 10−4) −0.02 (1 × 10−22) −0.24 (3 × 10−4) −0.019 (0.497) 0.042 (0.164)
Anterior corona radiata 0.48 (8 × 10−10) −0.04 (3 × 10−57) −0.05 (0.367) 0.000 (0.983) 0.031 (0.014)
Superior corona radiata 0.57 (4 × 10−12) −0.04 (2 × 10−52) 0.14 (0.017) −0.001 (0.938) 0.002 (0.419)
Posterior corona radiata 0.44 (1 × 10−9) −0.03 (9 × 10−40) 0.02 (0.784) 0.003 (0.850) 0.008 (0.271)
Posterior thalamic 0.44 (9 × 10−9) −0.04 (2 × 10−57) 0.06 (0.352) 0.005 (0.775) 0.012 (0.187)
Sagittal stratum 0.37 (3 × 10−6) −0.03 (8 × 10−43) −0.03 (0.676) 0.020 (0.217) 0.007 (0.323)
External capsule 0.53 (3 × 10−10) −0.03 (7 × 10−49) −0.13 (0.033) −0.001 (0.933) 0.007 (0.294)
Cingulum gyrus 0.44 (4 × 10−8) −0.03 (1 × 10−37) −0.27 (2 × 10−5) 0.016 (0.506) 0.012 (0.146)
Cingulum hippo 0.31 (1 × 10−4) −0.01 (0.016) −0.44 (6 × 10−10) 0.002 (0.873) 0.025 (0.097)
Superior longitudinal fasciculus 0.59 (6 × 10−13) −0.03 (2 × 10−43) −0.06 (0.339) 0.007 (0.542) 0.008 (0.184)
Superior frontooccipital fasciculus 0.43 (2 × 10−8) −0.03 (7 × 10−33) 0.03 (0.640) −0.009 (0.623) 0.000 (0.500)

Bolded estimates significant after correction for multiple testing (FDR = 0.05). SeeMaterials and Methods and SI Materials and Methods for information on
parameter estimates and related P values. IP-CPT, Identical Pairs Continues Performance Test; PCET, Penn Conditional Exclusion Test; CVLT, California Verbal
Learning Test; WASI, Wechsler Abbreviated Scale of Intelligence.
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over the age range assessed in this study (Fig. 4A). Five neuro-
cognitive had significant changes in their genetic correlation (ρg)
with age, suggesting that different genes influenced these traits
from young adulthood to old age; these included tests of working
and declarative memory (Letter–Number Span and CVLT De-
lay), processing speed (Trails A and Verbal Fluency), and
Wechsler Abbreviated Scale of Intelligence (WASI) Vocabulary,
indicating that heritable changes in neurocognitive functioning
was not restricted to a single cognitive domain. Genetic corre-
lation decreased as function of advancing age for each of these
neurocognitive traits (Fig. 4B).
In contrast to neurocognition, no white-matter tract showed

a significant G × A interaction (Table 1). The interaction term
for each neurocognitive trait and age (γ for σg2 variation with age
and λ for ρg variation with age; SI Materials and Methods) and
each white-matter trait and age are portrayed in Fig. 4C. Pa-
rameter estimates significantly differed between these classes of
phenotypes for interactions modeling changes in σg2 (neuro-
cognitive average −0.013 vs. white-matter average 0.005, P =
0.0001) and changes in ρg (0.019 vs. 0.013, P = 0.24) with age.

Effects of Education. Given that older individuals had significantly
fewer years of education (mean = 9.31 y for individuals older
than 70) relative to younger individuals (mean = 11.61 y for
individuals younger than 20), it is possible that differences in
education exacerbate age-related cognitive or white-matter de-
cline. However, because educational attainment was significantly
heritable in this sample (h2 = 0.64, P = 1.5 × 10-43), and because
genetic variants associated with education also appear to be as-
sociated with cognitive functioning (28), it is unclear if con-
trolling for educational attainment biases results by removing
genetic variance associated with neurocognitive ability. None-
theless, even when controlling for education attainment, signifi-
cant G × A interactions are observed for measures of processing
speed, working memory, and declarative memory (Table S2).

Discussion
In a large cohort of randomly selected related individuals, we
documented substantial effects of aging on neurocognitive
functioning and white-matter integrity. Both classes of traits are
under considerable genetic control. However, results indicate
that distinct genetic factors influence neurocognition and fac-
tional anisotropy, suggesting that these measures may reflect
disparate genetic pathways of biological aging. Furthermore, G ×
A interaction analyses, which directly tested changes in genetic
influence with aging, identified that the heritability of processing
speed, attention, and memory measures changed with advancing
age. These results imply that fluctuations in genetic influence with
advancing age trigger at least a portion of the neurocognitive

decline seen in normal aging. Our analyses suggest that for some
traits, G × A interactions are due to changes in the action of
specific genes, whereas for other measures, G × A interactions
are associated with differences in the exact genes that influence
the trait. Despite substantial power to detect effects, we found no
evidence for significant G × A interaction for DTI traits, sug-
gesting that age-related changes in white-matter integrity are less
influenced by genetic factors. There is considerable theoretical
debate whether the physical and cognitive changes associated
with aging are intrinsically “programmed” or are incidental to the
cumulative exposure to detrimental environmental elements
(29, 30). Though this debate has fundamental ramifications for
our understanding of the biology of aging, genes likely regulate
both one’s developmental program (31–33) and robustness to
environmental exposures (34, 35). In the case of neurocognitive
functioning, our data suggest that either model is viable. In
contrast, changes in white-matter integrity appear more consistent
with the model positing that robustness to environmental expo-
sures drives FA declines with age.
Our results do not imply that white-matter integrity is not

influenced by genetic factors. Indeed, we found significant heri-
tability estimates for all tracts. Rather, our findings suggest that
the changes in FA measures from young adulthood to old age are
unlikely to be under substantial genetic control. Our results in
the adult component of the human life course contrast with ev-
idence from developmental biology that specific genes influence
neuronal migration and the formation of white-matter tracts
(31), and that DTI measures are strongly influenced by genetic
factors during early childhood into early adolescence (36), sug-
gesting that once the brain is mature, variation in the coherence
of white-matter tracts is not directly controlled by genetic factors.
We observed a substantial decrease in neurocognitive and DTI

measures from young adulthood to old age, replicating several
prior reports (6, 37). Also, consistent with the literature, we found
evidence for modest phenotypic correlations between neuro-
cognitive and white-matter integrity, particularly for tests of speed
of processing (27, 38, 39), working and declarative memory (12,
13), and IQ (14, 25). However, our findings extend this work by

Fig. 2. The influence of aging and additive genetics on measures of tract-
based white-matter integrity is presented. Though the Upper depicts linear
effects of aging on tract-based FA measures, the Lower represents the
heritability of each tract. All tracts were significantly heritable and strongly
effected by aging. Fig. S1 provides reference labels for tracts.

Fig. 3. A heat map reflecting –log P values for phenotypic and genetic correla-
tions between neurocognitive and tract-based white-matter integrity measures
from809 individuals (seeTableS1 formoredetail). Thoughanumberof significant
phenotypic correlations were estimated, no genetic correlation was significant.
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suggesting that these correlations are primarily of an environ-
mental, rather than genetic, nature. This observation is consistent
with findings that white-matter microstructure can change when
individuals learn new skills (40, 41), even in old age (42), suggesting
that environmental changes (e.g., learning to juggle) can influence
FA levels. One implication from our analysis is that different ge-
netic factors influence neurocognitive performance and white-
matter FA in adulthood. Though it is quite possible that the same
biological pathways influence both brain structure and cognitive
function, our results suggest that different genes, potentially within
the same putative network, influence these traits. Consequently, it
appears that neurocognitive and white-matter integrity measures
are influenced by unique genetic factors, implying that different
genes may be associated with age-related neurocognitive decline
and reduced white-matter coherence.
Improving our understanding of the biological mechanisms

responsible for brain aging is clearly a pressing public health
concern. Here, we document that G × A interaction analysis in
extended pedigrees is well suited for discovering genes influ-
encing brain aging. Identifying one or more genes that controls
even a portion of the variance associated with brain aging should
provide a causal anchor to focus subsequent biological infer-
ences, informing this debate and providing clues into the aging
process within other organ systems. Clear demonstration of G ×
A interactions in readily measurable and reliable brain aging
phenotypes is an important first step in this scientific process.

Materials and Methods
Participants. English-speaking Mexican–American individuals from large ex-
tended pedigrees [81 pedigrees, average family size 14.95 (1–130) people]
who participate in the Genetics of Brain Structure and Function study were
included in the analysis (n = 1,129). Individuals in this cohort were randomly
selected from the community, with the constraints that they are of Mexican–
American ancestry, are part of a large family, and live within the San
Antonio region (see ref. 50 for recruitment details). No other inclusion or
exclusion criteria were imposed. However, individuals were excluded from
the neurocognitive evaluation for history of neurological illnesses, stroke, or
other major neurological event. Individuals were excluded from the neu-
roimaging evaluation for these criteria and for MRI contraindications.
Reported pedigree relationships were empirically verified with autosomal
markers. All participants provided written informed consent on forms ap-
proved by the Institutional Review Board at the University of Texas Health
Science Center San Antonio (UTHSCSA)/Texas Biomedical Research Institute
and the Human Investigation Committee (HIC) at Yale University.

Neurocognitive Assessment. Each participant completed a 90-min neuro-
psychological test battery consisting of standard and computerized measures
(23, 44). Twenty-two neurocognitive variables were derived from 16 sepa-
rate neuropsychological tests, including measures of attention, executive
processing, working memory, declarative memory, language processing,
intelligence, and emotional processing (Table S3).

Neuroimaging Assessment. Scanning was conducted at the Research Imaging
Institute, UTHSCSA, using a Siemens Trio 3T system (Siemens)with amultichannel
head coil. DTI data acquisition used a single-shot single spin-echo, echo-planar

imaging sequence with a spatial resolution of 1.7 × 1.7 × 3.0 mm (repetition
time/echo time = 8,000/87 ms, field of view = 200 mm, 55 nonparallel gradient
directions b = 700 s/mm2 and three non–diffusion-weighted images b = 0).
DTI scans were preprocessed using standard FSL pipelines (http://fsl.fmrib.ox.
ac.uk/fsl/fslwiki/FDT), and the resulting FA images were processed with tract-
based spatial statistics (TBSS) (45). All FA images were nonlinearly registered
to standard space, averaged, and skeletonized to create a study-specific TBSS
template (binarized at FA > 0.2). Next, the maximum nearby FA voxel was
projected onto the skeleton, resulting in one skeleton image per subject,
reflecting FA values of the centers of the white-matter structure for that
individual. For each subject, mean FA values were calculated for 16 tracts
(bilateral) as defined by the Johns Hopkins White Matter Atlas (46) (Fig. S1).
In addition, a global FA measure, reflecting the average FA throughout the
white-matter skeleton, was derived.

Quantitative Genetic Analyses.All genetic analyseswere conductedwith SOLAR,
which employs maximum-likelihood variance decomposition methods to de-
termine the relative importance of familial and environmental influences on
a measure, by modeling the covariance among family members as a function of
genetic proximity (kinship). Neurocognitive and neuroimaging variables un-
derwent a direct normalizationwith an inverseGaussian transformation. Tests of
variance component parameterswere performedusing standard likelihood ratio
tests in which the ln likelihood of the null model (focal variance component
constrained to zero) is compared with that of the alternative model (focal
variance component is explicitly estimated from the data). To control for mul-
tiple testing, the false discovery rate (FDR) (47) was set at 5% for neurocognitive
and DTI traits independently. Heritability, bivariate, and G × A interaction
analyses included age and sex as demographic covariates.

Heritability (h2) represents the portion of the phenotypic variance (σ2p)
accounted for by additive genetic variance (h2 = σ2g/σ2p). Indices with
stronger phenotypic covariance between genetically more similar individuals
than between genetically less similar individuals have higher heritability;
within SOLAR, this is assessed by contrasting the observed covariance ma-
trices for a measure with the covariance matrix predicted by kinship.

Bivariate polygenic analyses were performed to estimate the phenotypic
(ρp), genetic (ρg), and environmental (ρe) correlations between neuro-
cognitive and white-matter measures. The significance of these correlations
was tested by comparing the ln likelihood for two restricted models (with
either ρg or ρe constrained to equal 0.0) against the ln likelihood for the
model in which these parameters were estimated. A significant genetic
correlation is evidence for pleiotropy, that a gene or set of genes influences
both phenotypes (48). In contrast, a significant environmental correlation is
evidence that common nongenetic factors influence both traits.

Difference in genetic variance in response to environmental change (in-
cluding the physiological environment, age) is evidence of a G × E interaction.
Although aging is a continuous process, it is conceptually useful to explain
the relationship between G × E interaction and the heritable response to
environmental change in terms of two discrete environments. The additive
genetic variance in response ðσ2gΔÞ is a function of the additive genetic var-
iance expressed in the two environments and the additive genetic correla-
tion between the trait’s expression in the two environments:

σ2gΔ = σ2g1 + σ2g2 − 2ρgσg1σg2 =
�
σg1 − σg2

�2 + 2σg1σg2
�
1− ρg

�
:

The absence of G × E interaction implies that there is no genetic variance
for the response to the environment (i.e., σ2gΔ = 0). This equation, initially

Fig. 4. Predicted changes in heritability (A) or genetic corre-
lation (B) with age and the formal interaction terms (C) for
neurocognitive and white-matter integrity traits generated via
a gene-by-environment interaction analysis conducted with
cross-sectional data in extended pedigrees where aging was
treated as an environmental factor (e.g., G × A interaction
analysis). (A) Additive genetic heritabilities as a function of age
for traits that showed significant changes in genetic variance
(σg2) with age. (B) Significant changes in the genetic correlation
(ρg) as functions of advancing age. (C) Scatter plot of all of the
standardized G × A interaction terms for σg2 (parameter esti-
mate γ) or ρg (parameter estimate λ) for the neurocognitive and
white-matter traits separately. The distribution of these in-
teraction terms differed significantly between these classes
of traits (γ neurocognitive −0.013 vs. γ white matter 0.005,
P = 0.0001).
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derived by Robertson (49), shows that there is no G × E interaction when
σ2g1 = σ2g2 and ρg = 1. The first condition requires that the genetic variance be
constant across environments. Observed heteroscedasticity of genetic var-
iances across environments can arise simply because of scaling. For example,
if g2 = cg1, where c is a constant, σ2g2 will be equal to c2σ2g1 and (σg1 − σg1)2

will equal ð1− cÞ2σ2g1. For the second condition (ρg = 1) to hold, the same
genes must influence the phenotype in both environments and have similar
effects in each. The second condition is the requirement of complete plei-
otropy. In the absence of complete pleiotropy (ρg < 1), the genotypes may
exhibit different ranks in different environments: one genotype may express
the highest quantitative trait mean in one environment but a different
genotype may have the highest mean in a second environment.

For continuous environments such as aging, these relationships are
replaced with parametric continuous functions of the environment (21).
Specifically, the discrete two-environment model is extended to reflect
pairwise differences in environment between subjects, thereby sampling the
full range of subject ages in the cross-sectional sample (21, 50, 51). The hy-
pothesis in the extended model is that the phenotypic covariance between
individuals is a function of interaction between their similarity in age and
their genetic similarity. This relationship may be due to age-related changes
in genetic variance, ρg < 1 between measurements of the trait at different
ages, or both (22). See SI Materials and Methods for more detail.

We found evidence of G × A interaction for some neurocognitive traits
but for no white-matter trait. Because fewer individuals provided white-
matter than neurocognitive data, we performed formal analytical power
calculations using our exact data structure to assess our potential to detect
true effects in all traits (had these been present) of the same magnitude as
those we observed (51). For the test of σ2g1 = σ2g2, all traits had >97% power
to detect such effects. The power was less, but still substantial (range 63–
89%), for the test of ρg = 1. Thus, our power to detect G × A interaction is
considerable. Therefore, our inference that white-matter decline is not
influenced by moderate to strong G × A interaction and hence is not
strongly heritable is likely to be true in this population.
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