312 research outputs found
Rhyolite generation prior to a Yellowstone supereruption: insights from the Island Park-Mount Jackson rhyolite series
The Yellowstone volcanic field is one of the largest and best-studied centres of rhyolitic volcanism on Earth, yet it still contains little-studied periods of activity. Such an example is the Island Park–Mount Jackson series, which erupted between the Mesa Falls and Lava Creek caldera-forming events as a series of rhyolitic domes and lavas. Here we present the first detailed characterisation of these lavas and use our findings to provide a framework for rhyolite generation in Yellowstone between 1·3 and 0·6 Ma, as well as to assess whether magmatic evolution hints at a forthcoming super-eruption. These porphyritic (15–40% crystals) lavas contain mostly sanidine and quartz with lesser amounts of plagioclase (consistent with equilibrium magmatic modelling via rhyolite-MELTS) and a complex assemblage of mafic minerals. Mineral compositions vary significantly between crystals in each unit, with larger ranges than expected from a single homogeneous population in equilibrium with its host melt. Oxygen isotopes in quartz and sanidine indicate slight depletions (δ18Omagma of 5·0–6·1‰), suggesting some contribution by localised remelting of hydrothermally altered material in the area of the previous Mesa Falls Tuff-related caldera collapse. The preservation of variable O isotopic compositions in quartz requires crystal entrainment less than a few thousand years prior to eruption. Late entrainment of rhyolitic material is supported by the occurrence of subtly older sanidines dated by single-grain 40Ar/39Ar geochronology. The eruption ages of the lavas show discrete clusters illustrating that extended quiescence (>100 kyr) in magmatic activity may be a recurring feature in Yellowstone volcanism. Ubiquitous crystal aggregates, dominated by plagioclase, pyroxene and Fe–Ti oxides, are interpreted as cumulates co-erupted with their extracted liquid. Identical crystal aggregates are found in both normal-δ18O and low-δ18O rocks from Yellowstone, indicating that common petrogenetic processes characterise both volcanic suites, including the late-stage extraction of melt from an incrementally built upper crustal mush zone
Contrasting behaviours of CO 2 , S, H 2 O and halogens (F, Cl, Br, and I) in enriched-mantle melts from Pitcairn and Society seamounts
In order to improve characterisation of volatiles in the EM1 and EM2 mantle sources, which are interpreted to contain subducted sedimentary or lithospheric components, we report electron microprobe, FTIR and SIMS CO2, H2O, S, F and Cl concentrations of v
Information measures and classicality in quantum mechanics
We study information measures in quantu mechanics, with particular emphasis
on providing a quantification of the notions of classicality and
predictability. Our primary tool is the Shannon - Wehrl entropy I. We give a
precise criterion for phase space classicality and argue that in view of this
a) I provides a measure of the degree of deviation from classicality for closed
system b) I - S (S the von Neumann entropy) plays the same role in open systems
We examine particular examples in non-relativistic quantum mechanics. Finally,
(this being one of our main motivations) we comment on field classicalisation
on early universe cosmology.Comment: 35 pages, LATE
Consistent histories of systems and measurements in spacetime
Traditional interpretations of quantum theory in terms of wave function
collapse are particularly unappealing when considering the universe as a whole,
where there is no clean separation between classical observer and quantum
system and where the description is inherently relativistic. As an alternative,
the consistent histories approach provides an attractive "no collapse"
interpretation of quantum physics. Consistent histories can also be linked to
path-integral formulations that may be readily generalized to the relativistic
case. A previous paper described how, in such a relativistic spacetime path
formalism, the quantum history of the universe could be considered to be an
eignestate of the measurements made within it. However, two important topics
were not addressed in detail there: a model of measurement processes in the
context of quantum histories in spacetime and a justification for why the
probabilities for each possible cosmological eigenstate should follow Born's
rule. The present paper addresses these topics by showing how Zurek's concepts
of einselection and envariance can be applied in the context of relativistic
spacetime and quantum histories. The result is a model of systems and
subsystems within the universe and their interaction with each other and their
environment.Comment: RevTeX 4; 37 pages; v2 is a revision in response to reviewer
comments, connecting the discussion in the paper more closely to consistent
history concepts; v3 has minor editorial corrections; accepted for
publication in Foundations of Physics; v4 has a couple minor typographical
correction
Carbon clusters near the crossover to fullerene stability
The thermodynamic stability of structural isomers of ,
, and , including
fullerenes, is studied using density functional and quantum Monte Carlo
methods. The energetic ordering of the different isomers depends sensitively on
the treatment of electron correlation. Fixed-node diffusion quantum Monte Carlo
calculations predict that a isomer is the smallest stable
graphitic fragment and that the smallest stable fullerenes are the
and clusters with and
symmetry, respectively. These results support proposals that a
solid could be synthesized by cluster deposition.Comment: 4 pages, includes 4 figures. For additional graphics, online paper
and related information see http://www.tcm.phy.cam.ac.uk/~prck
Tunneling with dissipation and decoherence for a large spin
We present rigorous solution of problems of tunneling with dissipation and
decoherence for a spin of an atom or a molecule in an isotropic solid matrix.
Our approach is based upon switching to a rotating coordinate system coupled to
the local crystal field. We show that the spin of a molecule can be used in a
qubit only if the molecule is strongly coupled with its atomic environment.
This condition is a consequence of the conservation of the total angular
momentum (spin + matrix), that has been largely ignored in previous studies of
spin tunneling.Comment: 4 page
Dislocation-induced spin tunneling in Mn-12 acetate
Comprehensive theory of quantum spin relaxation in Mn-12 acetate crystals is
developed, that takes into account imperfections of the crystal structure and
is based upon the generalization of the Landau-Zener effect for incoherent
tunneling from excited energy levels. It is shown that linear dislocations at
plausible concentrations provide the transverse anisotropy which is the main
source of tunneling in Mn-12. Local rotations of the easy axis due to
dislocations result in a transverse magnetic field generated by the field
applied along the c-axis of the crystal, which explains the presence of odd
tunneling resonances. Long-range deformations due to dislocations produce a
broad distribution of tunnel splittings. The theory predicts that at subkelvin
temperatures the relaxation curves for different tunneling resonances can be
scaled onto a single master curve. The magnetic relaxation in the thermally
activated regime follows the stretched-exponential law with the exponent
depending on the field, temperature, and concentration of defects.Comment: 17 pages, 14 figures, 1 table, submitted to PR
Diffusion quantum Monte Carlo study of three-dimensional Wigner crystals
We report diffusion quantum Monte Carlo calculations of three-dimensional
Wigner crystals in the density range r_s=100-150. We have tested different
types of orbital for use in the approximate wave functions but none improve
upon the simple Gaussian form. The Gaussian exponents are optimized by directly
minimizing the diffusion quantum Monte Carlo energy. We have carefully
investigated and sought to minimize the potential biases in our Monte Carlo
results. We conclude that the uniform electron gas undergoes a transition from
a ferromagnetic fluid to a body-centered-cubic Wigner crystal at r_s=106+/-1.
The diffusion quantum Monte Carlo results are compared with those from
Hartree-Fock and Hartree theory in order to understand the role played by
exchange and correlation in Wigner crystals. We also study "floating" Wigner
crystals and give results for their pair-correlation functions
Observation of a Distribution of Internal Transverse Magnetic Fields in a Mn12-Based Single Molecule Magnet
A distribution of internal transverse magnetic fields has been observed in
single molecule magnet (SMM) Mn12-BrAc in the pure magnetic quantum tunneling
(MQT) regime. Magnetic relaxation experiments at 0.4 K are used to produce a
hole in the distribution of transverse fields whose angle and depth depend on
the orientation and amplitude of an applied transverse ``digging field.'' The
presence of such transverse magnetic fields can explain the main features of
resonant MQT in this material, including the tunneling rates, the form of the
relaxation and the absence of tunneling selection rules. We propose a model in
which the transverse fields originate from a distribution of tilts of the
molecular magnetic easy axes.Comment: 4 page
Photon-assisted tunneling in a Fe8 Single-Molecule Magnet
The low temperature spin dynamics of a Fe8 Single-Molecule Magnet was studied
under circularly polarized electromagnetic radiation allowing us to establish
clearly photon-assisted tunneling. This effect, while linear at low power,
becomes highly non-linear above a relatively low power threshold. This
non-linearity is attributed to the nature of the coupling of the sample to the
thermostat.These results are of great importance if such systems are to be used
as quantum computers.Comment: 4 pages, 4 figure
- …