262 research outputs found

    Instant Transformation of Learned Repulsion into Motivational “Wanting”

    Get PDF
    SummaryBackgroundLearned cues for pleasant reward often elicit desire, which, in addicts, may become compulsive. According to the dominant view in addiction neuroscience and reinforcement modeling, such desires are the simple products of learning, coming from a past association with reward outcome.ResultsWe demonstrate that cravings are more than merely the products of accumulated pleasure memories—even a repulsive learned cue for unpleasantness can become suddenly desired via the activation of mesocorticolimbic circuitry. Rats learned repulsion toward a Pavlovian cue (a briefly-inserted metal lever) that always predicted an unpleasant Dead Sea saltiness sensation. Yet, upon first reencounter in a novel sodium-depletion state to promote mesocorticolimbic reactivity (reflected by elevated Fos activation in ventral tegmentum, nucleus accumbens, ventral pallidum, and the orbitofrontal prefrontal cortex), the learned cue was instantly transformed into an attractive and powerful motivational magnet. Rats jumped and gnawed on the suddenly attractive Pavlovian lever cue, despite never having tasted intense saltiness as anything other than disgusting.ConclusionsInstant desire transformation of a learned cue contradicts views that Pavlovian desires are essentially based on previously learned values (e.g., prediction error or temporal difference models). Instead desire is recomputed at reencounter by integrating Pavlovian information with the current brain/physiological state. This powerful brain transformation reverses strong learned revulsion into avid attraction. When applied to addiction, related mesocorticolimbic transformations (e.g., drugs or neural sensitization) of cues for already-pleasant drug experiences could create even more intense cravings. This cue/state transformation helps define what it means to say that addiction hijacks brain limbic circuits of natural reward

    Reflection of electrons from a domain wall in magnetic nanojunctions

    Full text link
    Electronic transport through thin and laterally constrained domain walls in ferromagnetic nanojunctions is analyzed theoretically. The description is formulated in the basis of scattering states. The resistance of the domain wall is calculated in the regime of strong electron reflection from the wall. It is shown that the corresponding magnetoresistance can be large, which is in a qualitative agreement with recent experimental observations. We also calculate the spin current flowing through the wall and the spin polarization of electron gas due to reflections from the domain wall.Comment: 7 pages, 4 figure

    Angular dependence of domain wall resistivity in SrRuO3_{{\bf 3}} films

    Full text link
    SrRuO3{\rm SrRuO_3} is a 4d itinerant ferromagnet (Tc_{c} \sim 150 K) with stripe domain structure. Using high-quality thin films of SrRuO3_{3} we study the resistivity induced by its very narrow (3\sim 3 nm) Bloch domain walls, ρDW\rho_{DW} (DWR), at temperatures between 2 K and Tc_{c} as a function of the angle, θ\theta , between the electric current and the ferromagnetic domains walls. We find that ρDW(T,θ)=sin2θρDW(T,90)+B(θ)ρDW(T,0)\rho_{DW}(T,\theta)=\sin^2\theta \rho_{DW}(T,90)+B(\theta)\rho_{DW}(T,0) which provides the first experimental indication that the angular dependence of spin accumulation contribution to DWR is sin2θ\sin^2\theta. We expect magnetic multilayers to exhibit a similar behavior.Comment: 5 pages, 5 figure

    Ballistic electron transport through magnetic domain walls

    Full text link
    Electron transport limited by the rotating exchange-potential of domain walls is calculated in the ballistic limit for the itinerant ferromagnets Fe, Co, and Ni. When realistic band structures are used, the domain wall magnetoresistance is enhanced by orders of magnitude compared to the results for previously studied two-band models. Increasing the pitch of a domain wall by confinement in a nano-structured point contact is predicted to give rise to a strongly enhanced magnetoresistance.Comment: 4 pages, 2 figures; to appear in PRB as a brief repor

    Spin dynamics of Mn12-acetate in the thermally-activated tunneling regime: ac-susceptibility and magnetization relaxation

    Full text link
    In this work, we study the spin dynamics of Mn12-acetate molecules in the regime of thermally assisted tunneling. In particular, we describe the system in the presence of a strong transverse magnetic field. Similar to recent experiments, the relaxation time/rate is found to display a series of resonances; their Lorentzian shape is found to stem from the tunneling. The dynamic susceptibility χ(w)\chi(w) is calculated starting from the microscopic Hamiltonian and the resonant structure manifests itself also in χ(w)\chi(w). Similar to recent results reported on another molecular magnet, Fe8, we find oscillations of the relaxation rate as a function of the transverse magnetic field when the field is directed along a hard axis of the molecules. This phenomenon is attributed to the interference of the geometrical or Berry phase. We propose susceptibility experiments to be carried out for strong transverse magnetic fields to study of these oscillations and for a better resolution of the sharp satellite peaks in the relaxation rates.Comment: 22 pages, 23 figures; submitted to Phys. Rev. B; citations/references adde

    Genome-wide association of white blood cell counts in Hispanic/Latino Americans: the Hispanic Community Health Study/Study of Latinos

    Get PDF
    Circulating white blood cell (WBC) counts (neutrophils, monocytes, lymphocytes, eosinophils, basophils) differ by ethnicity. The genetic factors underlying basal WBC traits in Hispanics/Latinos are unknown. We performed a genome-wide association study of total WBC and differential counts in a large, ethnically diverse US population sample of Hispanics/Latinos ascertained by the Hispanic Community Health Study and Study of Latinos (HCHS/SOL). We demonstrate that several previously known WBC-associated genetic loci (e.g. the African Duffy antigen receptor for chemokines null variant for neutrophil count) are generalizable to WBC traits in Hispanics/Latinos. We identified and replicated common and rare germ-line variants at FLT3 (a gene often somatically mutated in leukemia) associated with monocyte count. The common FLT3 variant rs76428106 has a large allele frequency differential between African and non-African populations. We also identified several novel genetic loci involving or regulating hematopoietic transcription factors (CEBPE-SLC7A7, CEBPA and CRBN-TRNT1) associated with basophil count. The minor allele of the CEBPE variant associated with lower basophil count has been previously associated with Amerindian ancestry and higher risk of acute lymphoblastic leukemia in Hispanics. Together, these data suggest that germline genetic variation affecting transcriptional and signaling pathways that underlie WBC development and lineage specification can contribute to inter-individual as well as ethnic differences in peripheral blood cell counts (normal hematopoiesis) in addition to susceptibility to leukemia (malignant hematopoiesis)
    corecore