1,148 research outputs found

    M–M Bond-Stretching Energy Landscapes for M_2(dimen)_(4)^(2+) (M = Rh, Ir; dimen = 1,8-Diisocyanomenthane) Complexes

    Get PDF
    Isomers of Ir_2(dimen)_(4)^(2+) (dimen = 1,8-diisocyanomenthane) exhibit different Ir–Ir bond distances in a 2:1 MTHF/EtCN solution (MTHF = 2-methyltetrahydrofuran). Variable-temperature absorption data suggest that the isomer with the shorter Ir–Ir distance is favored at room temperature [K = ~8; ΔH° = −0.8 kcal/mol; ΔS° = 1.44 cal mol^(–1) K^(–1)]. We report calculations that shed light on M_2(dimen)_(4)^(2+) (M = Rh, Ir) structural differences: (1) metal–metal interaction favors short distances; (2) ligand deformational-strain energy favors long distances; (3) out-of-plane (A_(2u)) distortion promotes twisting of the ligand backbone at short metal–metal separations. Calculated potential-energy surfaces reveal a double minimum for Ir_2(dimen)_(4)^(2+) (4.1 Å Ir–Ir with 0° twist angle and ~3.6 Å Ir–Ir with ±12° twist angle) but not for the rhodium analogue (4.5 Å Rh–Rh with no twisting). Because both the ligand strain and A_(2u) distortional energy are virtually identical for the two complexes, the strength of the metal–metal interaction is the determining factor. On the basis of the magnitude of this interaction, we obtain the following results: (1) a single-minimum (along the Ir–Ir coordinate), harmonic potential-energy surface for the triplet electronic excited state of Ir_2(dimen)_(4)^(2+) (R_(e,Ir–Ir) = 2.87 Å; F_(Ir–Ir) = 0.99 mdyn Å^(–1)); (2) a single-minimum, anharmonic surface for the ground state of Rh_2(dimen)_(4)^(2+) (R_(e,Rh–Rh) = 3.23 Å; F_(Rh–Rh) = 0.09 mdyn Å^(–1)); (3) a double-minimum (along the Ir–Ir coordinate) surface for the ground state of Ir_2(dimen)_(4)^(2+) (R_(e,Ir–Ir) = 3.23 Å; F_(Ir–Ir) = 0.16 mdyn Å^(–1))

    A Digital Archive of HI 21 cm Line Spectra of Optically-targeted Galaxies

    Full text link
    We present a homogeneous compilation of HI spectral parameters extracted from global 21 cm line spectra for some 9000 galaxies in the local universe (heliocentric velocity -200 < V_Sun < 28,000 km/s) obtained with a variety of large single dish radio telescopes but reanalyzed using a single set of parameter extraction algorithms. Corrections to the observed HI line flux for source extent and pointing offsets and to the HI line widths for instrumental broadening and smoothing are applied according to model estimates to produce a homogenous catalog of derived properties with quantitative error estimates. Where the redshift is available from optical studies, we also provide flux measurements for an additional 156 galaxies classified as marginal HI detections and rms noise limits for 494 galaxies classified as nondetections. Given the diverse nature of the observing programs contributing to it, the characteristics of the combined dataset are heterogeneous, and as such, the compilation is neither integrated HI line flux nor peak flux limited. However, because of the large statistical base and homogenous reprocessing, the spectra and spectral parameters of galaxies in this optically targeted sample can be used to complement data obtained at other wavelengths to characterize the properties of galaxies in the local universe and to explore the large scale structures in which they reside.Comment: 13 pages, 9 figures, 3 external online tables, accepted for publication in ApJ

    Measurement of glucose exclusion from the fully hydrated DOPE inverse hexagonal phase

    Get PDF
    The degree of exclusion of glucose from the inverse hexagonal HII phase of fully hydrated DOPE is determined using contrast variation small angle neutron scattering and small angle X-ray scattering. The presence of glucose is found to favour the formation of the non-lamellar HII phase over the fluid lamellar phase, over a wide range of temperatures, while having no significant effect on the structure of the HII phase. Glucose is preferentially excluded from the lipid-water interface resulting in a glucose concentration in the HII phase of less than half that in the coexisting aqueous phase. The degree of exclusion is quantified and the results are consistent with a hydration layer of pure water adjacent to the lipid head groups from which glucose is excluded. The osmotic gradient created by the difference in glucose concentration is determined and the influence of glucose on the phase behaviour of non-lamellar phase forming lipid systems is discussed

    Diffusive and ballistic current spin-polarization in magnetron-sputtered L1o-ordered epitaxial FePt

    Full text link
    We report on the structural, magnetic, and electron transport properties of a L1o-ordered epitaxial iron-platinum alloy layer fabricated by magnetron-sputtering on a MgO(001) substrate. The film studied displayed a long range chemical order parameter of S~0.90, and hence has a very strong perpendicular magnetic anisotropy. In the diffusive electron transport regime, for temperatures ranging from 2 K to 258 K, we found hysteresis in the magnetoresistance mainly due to electron scattering from magnetic domain walls. At 2 K, we observed an overall domain wall magnetoresistance of about 0.5 %. By evaluating the spin current asymmetry alpha = sigma_up / sigma_down, we were able to estimate the diffusive spin current polarization. At all temperatures ranging from 2 K to 258 K, we found a diffusive spin current polarization of > 80%. To study the ballistic transport regime, we have performed point-contact Andreev-reflection measurements at 4.2 K. We obtained a value for the ballistic current spin polarization of ~42% (which compares very well with that of a polycrystalline thin film of elemental Fe). We attribute the discrepancy to a difference in the characteristic scattering times for oppositely spin-polarized electrons, such scattering times influencing the diffusive but not the ballistic current spin polarization.Comment: 22 pages, 13 figure

    Overexpression of Fatty Acid Amide Hydrolase Induces Early Flowering in Arabidopsis thaliana

    Get PDF
    N-Acylethanolamines (NAEs) are bioactive lipids derived from the hydrolysis of the membrane phospholipid N-acylphosphatidylethanolamine (NAPE). In animal systems this reaction is part of the “endocannabinoid” signaling pathway, which regulates a variety of physiological processes. The signaling function of NAE is terminated by fatty acid amide hydrolase (FAAH), which hydrolyzes NAE to ethanolamine and free fatty acid. Our previous work in Arabidopsis thaliana showed that overexpression of AtFAAH (At5g64440) lowered endogenous levels of NAEs in seeds, consistent with its role in NAE signal termination. Reduced NAE levels were accompanied by an accelerated growth phenotype, increased sensitivity to abscisic acid (ABA), enhanced susceptibility to bacterial pathogens, and early flowering. Here we investigated the nature of the early flowering phenotype of AtFAAH overexpression. AtFAAH overexpressors flowered several days earlier than wild type and AtFAAH knockouts under both non-inductive short day (SD) and inductive long day (LD) conditions. Microarray analysis revealed that the FLOWERING LOCUS T (FT) gene, which plays a major role in regulating flowering time, and one target MADS box transcription factor, SEPATALLA3 (SEP3), were elevated in AtFAAH overexpressors. Furthermore, AtFAAH overexpressors, with the early flowering phenotype had lower endogenous NAE levels in leaves compared to wild type prior to flowering. Exogenous application of NAE 12:0, which was reduced by up to 30% in AtFAAH overexpressors, delayed the onset of flowering in wild type plants. We conclude that the early flowering phenotype of AtFAAH overexpressors is, in part, explained by elevated FT gene expression resulting from the enhanced NAE hydrolase activity of AtFAAH, suggesting that NAE metabolism may participate in floral signaling pathways

    14-3-3 Proteins Regulate a Cell-Intrinsic Switch from Sonic Hedgehog-Mediated Commissural Axon Attraction to Repulsion after Midline Crossing

    Get PDF
    SummaryAxons must switch responsiveness to guidance cues during development for correct pathfinding. Sonic Hedgehog (Shh) attracts spinal cord commissural axons ventrally toward the floorplate. We show that after crossing the floorplate, commissural axons switch their response to Shh from attraction to repulsion, so that they are repelled anteriorly by a posterior-high/anterior-low Shh gradient along the longitudinal axis. This switch is recapitulated in vitro with dissociated commissural neurons as they age, indicating that the switch is intrinsic and time dependent. 14-3-3 protein inhibition converted Shh-mediated repulsion of aged dissociated neurons to attraction and prevented the correct anterior turn of postcrossing commissural axons in vivo, an effect mediated through PKA. Conversely, overexpression of 14-3-3 proteins was sufficient to drive the switch from Shh-mediated attraction to repulsion both in vitro and in vivo. Therefore, we identify a 14-3-3 protein-dependent mechanism for a cell-intrinsic temporal switch in the polarity of axon turning responses

    Magnetochronology of the Entire Chinle Formation (Norian Age) in a Scientific Drill Core From Petrified Forest National Park (Arizona, USA) and Implications for Regional and Global Correlations in the Late Triassic

    Get PDF
    Building on an earlier study that confirmed the stability of the 405‐kyr eccentricity climate cycle and the timing of the Newark‐Hartford astrochronostratigraphic polarity time scale back to 215 Ma, we extend the magnetochronology of the Late Triassic Chinle Formation to its basal unconformity in scientific drill core PFNP‐1A from Petrified Forest National Park (Arizona, USA). The 335‐m‐thick Chinle section is imprinted with paleomagnetic polarity zones PF1r to PF10n, which we correlate to chrons E17r to E9n (~209 to 224 Ma) of the Newark‐Hartford astrochronostratigraphic polarity time scale. A sediment accumulation rate of ~34 m/Myr can be extended down to ~270 m, close to the base of the Sonsela Member and the base of magnetozone PF5n, which we correlate to chron E14n that onsets at 216.16 Ma. Magnetozones PF5r to PF10n in the underlying 65‐m‐thick section of the mudstone‐dominated Blue Mesa and Mesa Redondo members plausibly correlate to chrons E13r to E9n, indicating a sediment accumulation rate of only ~10 m/Myr. Published high‐precision U‐Pb detrital zircon dates from the lower Chinle tend to be several million years older than the magnetochronological age model. The source of this discrepancy is unclear but may be due to sporadic introduction of juvenile zircons that get recycled. The new magnetochronological constraint on the base of the Sonsela Member brings the apparent timing of the included Adamanian‐ Revueltian land vertebrate faunal zone boundary and the Zone II to Zone III palynofloral transition closer to the temporal range of the ~215 Ma Manicouagan impact structure in Canada

    Evaluating the accuracy of a functional SNP annotation system

    Get PDF
    Many common and chronic diseases are influenced at some level by genetic variation. Research done in population genetics, specifically in the area of single nucleotide polymorphisms (SNPs) is critical to understanding human genetic variation. A key element in assessing role of a given SNP is determining if the variation is likely to result in change in function. The SNP Integration Tool (SNPit) is a comprehensive tool that integrates diverse, existing predictors of SNP functionality, providing the user with information for improved association study analysis. To evaluate the SNPit system, we developed an alternative gold standard to measure accuracy using sensitivity and specificity. The results of our evaluation demonstrated that our alternative gold standard produced encouraging results
    corecore