7 research outputs found

    Stress Resistance Screen in a Human Primary Cell Line Identifies Small Molecules That Affect Aging Pathways and Extend Caenorhabditis elegans' Lifespan.

    Get PDF
    Increased resistance to environmental stress at the cellular level is correlated with the longevity of long-lived mutants and wild-animal species. Moreover, in experimental organisms, screens for increased stress resistance have yielded mutants that are long-lived. To find entry points for small molecules that might extend healthy longevity in humans, we screened ∼100,000 small molecules in a human primary-fibroblast cell line and identified a set that increased oxidative-stress resistance. Some of the hits fell into structurally related chemical groups, suggesting that they may act on common targets. Two small molecules increased C. elegans' stress resistance, and at least 9 extended their lifespan by ∼10-50%. We further evaluated a chalcone that produced relatively large effects on lifespan and were able to implicate the activity of two, stress-response regulators, NRF2/skn-1 and SESN/sesn-1, in its mechanism of action. Our findings suggest that screening for increased stress resistance in human cells can enrich for compounds with promising pro-longevity effects. Further characterization of these compounds may reveal new ways to extend healthy human lifespan

    A high-throughput turbidometric assay for screening inhibitors of Leishmania major protein disulfide isomerase.

    No full text
    International audienceThe use of a high-throughput technique to perform a pilot screen for Leishmania major protein disulfide isomerase (LmPDI) inhibitors identification is reported. In eukaryotic cells, protein disulfide isomerase (PDI) plays a crucial role in protein folding by catalyzing the rearrangement of disulfide bonds in substrate proteins following their synthesis. LmPDI displays similar domain structure organization and functional properties to other PDI family members and is involved in Leishmania virulence. The authors used a method based on the enzyme-catalyzed reduction of insulin in the presence of dithiothreitol. The screen of a small library of 1920 compounds was performed in a 384-well format and led to the identification of 27 compounds with inhibitory activity against LmPDI. The authors further tested the cytotoxicity of these compounds using Jurkat cells as well as their effect on Leishmania donovani amastigotes using high-content analysis. Results show hexachlorophene and a mixture of theaflavin monogallates inhibit Leishmania multiplication in infected macrophages derived from THP-1 cells, although the inhibitory effect on LmPDI enzymatic activity does not necessarily correlate with the antileishmanial activity

    The aignopsanes, a new class of sesquiterpenes from selected chemotypes of the sponge Cacospongia mycofijiensis.

    No full text
    A survey of individual specimens of northern Papua New Guinea derived Cacospongia mycofijiensis has yielded novel sesquiterpenes, aignopsanoic acid A (1), methyl aignopsanoate A (2), and isoaignopsanoic acid A (3). The structures and absolute configurations of 1-3 were established using NMR data, X-ray crystallography results, and an analysis of CD properties. Two of these metabolites, 1 and 2, were moderately active against Trypanosoma brucei, the parasite responsible for sleeping sickness
    corecore