500 research outputs found

    Global gene expression in endometrium of high and low fertility heifers during the mid-luteal phase of the estrous cycle

    Get PDF
    peer-reviewedBackground In both beef and dairy cattle, the majority of early embryo loss occurs within the first 14 days following insemination. During this time-period, embryos are completely dependent on their maternal uterine environment for development, growth and ultimately survival, therefore an optimum uterine environment is critical to their survival. The objective of this study was to investigate whether differences in endometrial gene expression during the mid-luteal phase of the estrous cycle exist between crossbred beef heifers ranked as either high (HF) or low fertility (LF) (following four rounds of artificial insemination (AI)) using the Affymetrix® 23 K Bovine Gene Chip. Results Conception rates for each of the four rounds of AI were within a normal range: 70–73.3%. Microarray analysis of endometrial tissue collected on day 7 of the estrous cycle detected 419 differentially expressed genes (DEG) between HF (n = 6) and LF (n = 6) animals. The main gene pathways affected were, cellular growth and proliferation, angiogenesis, lipid metabolism, cellular and tissue morphology and development, inflammation and metabolic exchange. DEG included, FST, SLC45A2, MMP19, FADS1 and GALNT6. Conclusions This study highlights, some of the molecular mechanisms potentially controlling uterine endometrial function during the mid-luteal phase of the estrous cycle, which may contribute to uterine endometrial mediated impaired fertility in cattle. Differentially expressed genes are potential candidate genes for the identification of genetic variation influencing cow fertility, which may be incorporated into future breeding programmes.Teagasc Walsh Fellowship Programm

    Nanotopography of Polystyrene/Poly(methyl methacrylate) for the Promotion of Patient Specific Von Willebrand Factor Entrapment and Platelet Adhesion in a Whole Blood Microfluidic Assay

    Get PDF
    Platelet function testing is essential for the diagnosis of patients with bleeding disorders. Specifically, there is a need for a whole blood assay that is capable of analysing platelet behaviour in contact with a patient-specific autologous von Willebrand factor (vWF), under physiologically relevant conditions. The creation of surface topography capable of entrapping and uncoiling vWF for the support of subsequent platelet adhesion within the same blood sample offers a potential basis for such an assay. In this study, spin coating of polystyrene/poly (methyl methacrylate) (PS/PMMA) demixed solutions onto glass substrates in air has been used to attain surfaces with well-defined topographical features. The effect of augmenting the PS/PMMA solution with uniform 50 µm PS microspheres that can moderate the demixing process on the resultant surface features has also been investigated. The topographical features created here by spin coating under ambient air pressure conditions, rather than in nitrogen, which previous work reports, produces substrate surfaces with the ability to entrap vWF from flowing blood and facilitate platelet adhesion. The direct optical visualisation of fluorescently-labelled platelets indicates that topography resulting from inclusion of PS microspheres in the PS/PMMA spin coating solution increases the total number of platelets that adhere to the substrate surface over the period of the microfluidic assay. However, a detailed analysis of the adhesion rate, mean translocating velocity, mean translocation distance, and fraction of the stably adhered platelets measured during blood flow under arterial equivalent mechanical shear conditions indicates no significant difference for topographies created with or without inclusion of the PS microspheres. </p

    RNA-seq analysis of differential gene expression in liver from lactating dairy cows divergent in negative energy balance

    Get PDF
    peer-reviewedBackground: The liver is central to most economically important metabolic processes in cattle. However, the changes in expression of genes that drive these processes remain incompletely characterised. RNA-seq is the new gold standard for whole transcriptome analysis but so far there are no reports of its application to analysis of differential gene expression in cattle liver. We used RNA-seq to study differences in expression profiles of hepatic genes and their associated pathways in individual cattle in either mild negative energy balance (MNEB) or severe negative energy balance (SNEB). NEB is an imbalance between energy intake and energy requirements for lactation and body maintenance. This aberrant metabolic state affects high-yielding dairy cows after calving and is of considerable economic importance because of its negative impact on fertility and health in dairy herds. Analysis of changes in hepatic gene expression in SNEB animals will increase our understanding of NEB and contribute to the development of strategies to circumvent it. Results: RNA-seq analysis was carried out on total RNA from liver from early post partum Holstein Friesian cows in MNEB (n = 5) and SNEB (n = 6). 12,833 genes were deemed to be expressed (>4 reads per gene per animal), 413 of which were shown to be statistically significantly differentially expressed (SDE) at a false discovery rate (FDR) of 0.1% and 200 of which were SDE (FDR of 0.1%) with a ≥2-fold change between MNEB and SNEB animals. GOseq/KEGG pathway analysis showed that SDE genes with ≥2- fold change were associated (P <0.05) with 9 KEGG pathways. Seven of these pathways were related to fatty acid metabolism and unexpectedly included ‘Steroid hormone biosynthesis’, a process which mainly occurs in the reproductive organs rather than the liver. Conclusions: RNA-seq analysis showed that the major changes at the level of transcription in the liver of SNEB cows were related to fat metabolism. 'Steroid hormone biosynthesis', a process that normally occurs in reproductive tissue, was significantly associated with changes in gene expression in the liver of SNEB cows. Changes in gene expression were found in this pathway that have not been previously been identified in SNEB cows.This work was funded by Teagasc under the Irish National Development Plan and Chris Creevey is funded under the Science Foundation Ireland (SFI) Stokes lecturer scheme (07/SK/B1236A)

    Effects of negative energy balance on liver gene and protein expression during the early postpartum period and its impacts on dairy cow fertility

    Get PDF
    End of project reportNegative energy balance (NEB) is a severe metabolic affecting high yielding dairy cows early post partum with both concurrent and latent negative effects on cow fertility as well as on milk production and cow health. The seasonal nature of Irish dairy production necessitates high cow fertility and a compact spring calving pattern in order to maximise grass utilisation. Poor dairy cow reproductive performance currently costs the Irish cattle industry in excess of €400 million annually. High milk yields have been associated with lower reproductive efficiency, and it has been suggested that this effect is probably mediated through its effects on the energy balance of the cow during lactation. The modern high genetic merit dairy cow prioritises nutrient supply towards milk production in early lactation and this demand takes precedence over the provision of optimal conditions for reproduction. In this study we used the bovine Affymetrix 23,000 gene microarray, which contains the most comprehensive set of bovine genes to be assembled and provides a means of investigating the modifying influences of energy balance on liver gene expression. Cows in severe negative energy balance (SNEB) in early lactation showed altered hepatic gene expression in metabolic processes as well as a down regulation of the insulin-like growth factor (IGF) system, where insulin like growth factor-1 (IGF-1), growth hormone receptor variant 1A (GHR1A) and insulin-like growth factor binding protein-acid labile subunit (IGFBP-ALS) were down regulated compared to the cows in the moderate negative energy balance MNEB group, consistent with a five-fold reduction in systemic concentrations of IGF1 in the SNEB group.Cows in SNEB showed elevated expression of key genes involved in the inflammatory response such as interleukin-8 (IL-8). There was a down regulation of genes involved in cellular growth in SNEB cows and moreover a negative regulator of cellular proliferation (HGFIN) was up regulated in SNEB cows, which is likely to compromise adaptation and recovery from NEB. The puma method of analysis revealed that 417 genes were differentially regulated by EB (P<0.05), of these genes 190 were up-regulated while 227 were down-regulated, with 405 genes having known biological functions. From Ingenuity Pathway Analysis (IPA), lipid catabolism was found to be the process most affected by differences in EB status

    Clopidogrel discontinuation and platelet reactivity following coronary stenting.

    Get PDF
    Aims: Antiplatelet therapy with aspirin and clopidogrel are recommended for 1 year after drug-eluting stent (DES) implantation or myocardial infarction. However, the discontinuation of antiplatelet therapy has become an important issue as recent studies have suggested a clustering of ischaemic events within 90 days of clopidogrel withdrawal. The objective of this investigation was to explore the hypothesis that there is a transient \u22rebound\u22 increase in platelet reactivity within three months of clopidogrel discontinuation. Methods and Results: In this prospective study, platelet function was assessed in patients taking aspirin and clopidogrel for at least 1 year following DES implantation. Platelet aggregation was measured using a modification of light transmission aggregometry in response to multiple concentrations of adenosine diphosphate (ADP), epinephrine, arachidonic acid, thrombin receptor activating peptide and, collagen. Clopidogrel was stopped and platelet function was reassessed 1 week, 1 month and 3 months later. Thirty-two patients on dual antiplatelet therapy were recruited. Discontinuation of clopidogrel increased platelet aggregation to all agonists, except arachidonic acid. Platelet aggregation in response to ADP (2.5, 5, 10, 20 μM) and epinephrine (5, 20 μM) was significantly increased at 1 month compared to 3 months following clopidogrel withdrawal. Thus, a transient period of increased platelet reactivity to both ADP and epinephrine was observed 1 month after clopidogrel discontinuation. Conclusions: This study demonstrates a transient increase in platelet reactivity 1 month after clopidogrel withdrawal. This phenomenon may, in part, explain the known clustering of thrombotic events observed after clopidogrel discontinuation. This observation requires confirmation in larger populations

    Entrapment of Autologous von Willebrand Factor on Polystyrene/Poly(methyl methacrylate) Demixed Surfaces

    Get PDF
    Human platelets play a vital role in haemostasis, pathological bleeding and thrombosis. The haemostatic mechanism is concerned with the control of bleeding from injured blood vessels, whereby platelets interact with the damaged inner vessel wall to form a clot (thrombus) at the site of injury. This adhesion of platelets and their subsequent aggregation is dependent on the presence of the blood protein von Willebrand Factor (vWF). It is proposed here that the entrapment of vWF on a substrate surface offers the opportunity to assess an individual’s platelet function in a clinical diagnostic context. Spin coating from demixed solutions of polystyrene (PS) and poly(methyl methacrylate) (PMMA) onto glass slides has been shown previously to support platelet adhesion but the mechanism by which this interaction occurs, including the role of vWF, is not fully understood. In this work, we report a study of the interaction of platelets in whole blood with surfaces produced by spin coating from a solution of a weight/weight mixture of a 25% PS and 75% PMMA (25PS/75PMMA) in chloroform in the context of the properties required for their use as a Dynamic Platelet Function Assay (DPFA) substrate. Atomic Force Microscopy (AFM) indicates the presence of topographical features on the polymer demixed surfaces in the sub-micron to nanometer range. X-ray Photoelectron Spectroscopy (XPS) analysis confirms that the uppermost surface chemistry of the coatings is solely that of PMMA. The deliberate addition of various amounts of 50 μm diameter PS microspheres to the 25PS/75PMMA system has been shown to maintain the PMMA chemistry, but to significantly change the surface topography and to subsequently effect the scale of the resultant platelet interactions. By blocking specific platelet binding sites, it has been shown that their interaction with these surfaces is a consequence of the entrapment and build-up of vWF from the same whole blood sample

    TNF Receptor-Associated Factor 4 (TRAF4) is a novel binding partner of glycoprotein Ib and glycoprotein VI in human platelets.

    Get PDF
    Background: Reactive oxygen species generation is one consequence of ligand engagement of platelet glycoprotein (GP) receptors GPIb-IX-V and GPVI, which bind VWF/collagen and initiate thrombosis at arterial shear, however the precise molecular mechanism coupling redox pathway activation to engagement of these receptors is unknown. Objective: The objective of this study was to identify novel binding partners for GPIb-IX-V and GPVI that could provide a potential link between redox pathways and early platelet signalling events. Methods and Results: Using protein array analysis and affinity-binding assays, we demonstrated that the orphan TNF receptor-associated factor (TRAF) family member, TRAF4, selectively binds cytoplasmic sequences of GPIbβ and GPVI. TRAF4, p47(phox) (of the NADPH oxidase (Nox2) enzyme complex), and other redox relevant signalling proteins such as Hic-5, co-immunoprecipitate with GPIb/GPVI from human platelet lysates whilst MBP-TRAF4 or MBP-p47(phox) fusion proteins specifically pull-down GPIb/GPVI. GPIb- or GPVI-selective agonists induce phosphorylation of the TRAF4-associated proteins, Hic-5 and Pyk2, with phosphorylation attenuated by Nox2 inhibition. Conclusion: These results describe the first direct association of TRAF4 with a receptor, and identify a novel binding partner for GPIb-IX-V and GPVI, providing a potential link between these platelet receptors and downstream TRAF4/Nox2-dependent redox pathways

    Self-Powered Microfluidic Device for Rapid Assay of Antiplatelet Drugs

    Get PDF
    We report the development of a microfluidic device for the rapid assay in whole blood of platelet-protein interactions indicative of the efficacy of antiplatelet drugs—e.g., aspirin and Plavix, two of the world’s most widely used drugs—in cardiovascular patients. Because platelet adhesion to surface-confined protein matrices is modulated by fluid shear rates at the blood/protein interface, and because such binding is a better indicator of platelet function than platelet self-aggregation, we designed, fabricated, and characterized the performance of a family of disposable, self-powered microfluidic chips with well-defined flow and interfacial shear rates suitable for small blood volumes (≤ 200 µL). We report a simple technique to fabricate single-use self-powered chips incorporating shear control, “SpearChips”. These parallel-plate flow devices integrate on-chip vacuum-driven blood flow, using a pre-degassed elastomer component to obviate active pumping, with microcontact-printed arrays of 6-µm-diameter fluorescently-labeled fibrinogen dots on a poly(cycloolefin) base plate as a means to quantitatively count platelet-protein binding events. The use of SpearChips to assess in whole blood samples the effects of GPIIb/IIIa and P2Y12 inhibitors—two important classes of “antiplatelet” drugs—is reported

    Human IgG antibody profiles differentiate between symptomatic patients with and without colorectal cancer

    Get PDF
    Abstract OBJECTIVE: Patients with cancer have antibodies against tumour antigens. Characterising the antibody repertoire may provide insights into aberrant cellular mechanisms in cancer development, ultimately leading to novel diagnostic or therapeutic targets. The aim of this study was to characterise the antibody profiles in patients whose symptoms warranted colonoscopy, to see if there was a difference in patients with and without colorectal cancer. METHODS: Patients were recruited from a colonoscopy clinic. Individual serum samples from 43 patients with colorectal cancer and 40 patients with no cancer on colonoscopy were profiled on a 37 830 clone recombinant human protein array. Antigen expression was evaluated by quantitative reverse transcription-PCR and by immunohistochemistry on tissue microarrays. RESULTS: Using a sex- and age-matched training set, 18 antigens associated with cancer and 4 associated with the absence of cancer (p\u3c0.05) were identified and confirmed. To investigate the mechanisms triggering antibody responses to these antigens, antigen expression was examined in normal colorectal mucosa and colorectal carcinoma of the same patients. The identified antigens showed cellular accumulation (p53), aberrant cellular expression (high mobility group B1 (HMGB1)) and overexpression (tripartite motif-containing 28 (TRIM28), p53, HMGB1, transcription factor 3 (TCF3), longevity assurance gene homologue 5 (LASS5) and zinc finger protein 346 (ZNF346)) in colorectal cancer tissue compared with normal colorectal mucosa. CONCLUSIONS: It is demonstrated for the first time that screening high-density protein arrays identifies unique antibody profiles that discriminate between symptomatic patients with and without colorectal cancer. The differential expression of identified antigens suggests their involvement in aberrant cellular mechanisms in cance

    Computational Tracking of Shear-Mediated Platelet Interactions with von Willebrand Factor

    Get PDF
    The imaging of shear-mediated dynamic platelet behavior interacting with surface-immobilized von Willebrand factor (vWF) has tremendous potential in characterizing changes in platelet function for clinical diagnostics purposes. However, the imaging output, a series of images representing platelets adhering and rolling on the surface, poses unique, non-trivial challenges for software algorithms that reconstruct the positional trajectories of platelets. We report on an algorithm that tracks platelets using the output of such flow run experiments, taking into account common artifacts encountered by previously-published methods, and we derive seven key metrics of platelet dynamics that can be used to characterize platelet function. Extensive testing of our method using simulated platelet flow run data was carried out to validate our tracking method and derived metrics in capturing key platelet-vWF interaction-dynamics properties. Our results show that while the number of platelets present on the imaged area is the leading cause of errors, flow run data from two experiments using whole blood samples showed that our method and metrics can detect platelet property changes/differences that are concordant with the expected biological outcome, such as inhibiting key platelet receptors such as P2Y1, glycoprotein (GP)Ib and GPIIb/IIIa. These findings support the use of our methodologies to characterize platelet function among a wide range of healthy and disease cohorts
    corecore