480 research outputs found

    Guest Artist Recital: Kenneth Tse

    Get PDF
    Kemp Recital HallApril 22, 2012Sunday Afternoon5:00 p.m

    Priming Leukemia with 5-Azacytidine Enhances CAR T Cell Therapy

    Get PDF
    Purpose: Despite the success of chimeric antigen receptor (CAR) T cells in clinical studies, a significant proportion of responding patients eventually relapsed, with the latter correlating with low CAR T cell expansion and persistence. Methods and Results: Using patient-derived xenograft (PDX) mouse models of CD19+ B cell acute lymphoblastic leukemia (B-ALL), we show that priming leukemia-bearing mice with 5-azacytidine (AZA) enhances CAR T cell therapy. AZA given 1 day prior to CAR T cell infusion delayed leukemia growth and promoted CAR T cell expansion and effector function. Priming leukemia cells with AZA increased CAR T cell/target cell conjugation and target cell killing, promoted CAR T cell divisions and expanded IFNγ+ effector T cells in co-cultures with CD19+ leukemia Nalm-6 and Raji cells. Transcriptome analysis revealed activation of diverse immune pathways in leukemia cells isolated from mice treated with AZA. We propose that epigenetic priming with AZA induces transcriptional changes that sensitize tumor cells to subsequent CAR T cell treatment. Among the candidate genes up-regulated by AZA is TNFSF4 which encodes OX40L, one of the strongest T cell co-stimulatory ligands. OX40L binds OX40, the TNF receptor superfamily member highly specific for activated T cells. TNFSF4 is heterogeneously expressed in a panel of pediatric PDXs, and high TNFSF4 expression correlated with increased CAR T cell numbers identified in co-cultures with individual PDXs. High OX40L expression in Nalm-6 cells increased their susceptibility to CAR T cell killing while OX40L blockade reduced leukemia cell killing. Conclusion: We propose that treatment with AZA activates OX40L/OX40 co-stimulatory signaling in CAR T cells. Our data suggest that the clinical use of AZA before CAR T cells could be considered

    Panton-Valentine Leukocidin–positive Staphylococcus aureus, Singapore

    Get PDF
    10.3201/eid1008.031088Emerging Infectious Diseases1081509-151

    Promyelocytic leukemia nuclear bodies behave as DNA damage sensors whose response to DNA double-strand breaks is regulated by NBS1 and the kinases ATM, Chk2, and ATR

    Get PDF
    The promyelocytic leukemia (PML) nuclear body (NB) is a dynamic subnuclear compartment that is implicated in tumor suppression, as well as in the transcription, replication, and repair of DNA. PML NB number can change during the cell cycle, increasing in S phase and in response to cellular stress, including DNA damage. Although topological changes in chromatin after DNA damage may affect the integrity of PML NBs, the molecular or structural basis for an increase in PML NB number has not been elucidated. We demonstrate that after DNA double-strand break induction, the increase in PML NB number is based on a biophysical process, as well as ongoing cell cycle progression and DNA repair. PML NBs increase in number by a supramolecular fission mechanism similar to that observed in S-phase cells, and which is delayed or inhibited by the loss of function of NBS1, ATM, Chk2, and ATR kinase. Therefore, an increase in PML NB number is an intrinsic element of the cellular response to DNA damage

    Anti-α4 Antibody Treatment Blocks Virus Traffic to the Brain and Gut Early, and Stabilizes CNS Injury Late in Infection

    Get PDF
    Four SIV-infected monkeys with high plasma virus and CNS injury were treated with an anti-α4 blocking antibody (natalizumab) once a week for three weeks beginning on 28 days post-infection (late). Infection in the brain and gut were quantified, and neuronal injury in the CNS was assessed by MR spectroscopy, and compared to controls with AIDS and SIV encephalitis. Treatment resulted in stabilization of ongoing neuronal injury (NAA/Cr by 1H MRS), and decreased numbers of monocytes/macrophages and productive infection (SIV p28+, RNA+) in brain and gut. Antibody treatment of six SIV infected monkeys at the time of infection (early) for 3 weeks blocked monocyte/macrophage traffic and infection in the CNS, and significantly decreased leukocyte traffic and infection in the gut. SIV – RNA and p28 was absent in the CNS and the gut. SIV DNA was undetectable in brains of five of six early treated macaques, but proviral DNA in guts of treated and control animals was equivalent. Early treated animals had low-to-no plasma LPS and sCD163. These results support the notion that monocyte/macrophage traffic late in infection drives neuronal injury and maintains CNS viral reservoirs and lesions. Leukocyte traffic early in infection seeds the CNS with virus and contributes to productive infection in the gut. Leukocyte traffic early contributes to gut pathology, bacterial translocation, and activation of innate immunity

    Treatment with Methylphenidate for Attention Deficit Hyperactivity Disorder (ADHD) and the Risk of All-Cause Poisoning in Children and Adolescents:A Self-Controlled Case Series Study

    Get PDF
    BACKGROUND: Children and adolescents with attention deficit hyperactivity disorder (ADHD) are at higher risk of all-cause poisoning by drugs and chemicals (intentional or accidental). Currently, there is limited data on whether medication treatment for ADHD can reduce the risk of all-cause poisoning. METHODS: Patients aged 5–18 years with a methylphenidate (MPH) prescription and an incident poisoning diagnosis between January 2001 and June 2020 were identified from the Hong Kong Clinical Data Analysis and Reporting System. A self-controlled case series study design was used to compare the incidence rate ratios (IRRs) of all-cause poisoning during different risk windows (30 days before the first MPH prescription, exposure periods within 30 days of the first prescription, and periods of subsequent exposure) compared with the reference window (other non-exposure periods). RESULTS: 42,203 patients were prescribed ADHD medication in Hong Kong during the study period. Of these, 417 patients who had both an MPH prescription and poisoning incident recorded were included in the main analysis. Compared with other non-exposed periods, a higher risk of poisoning was found in the 30 days before the first prescription (IRR 2.64, 95% confidence interval [CI] 1.33–5.22) and exposure periods within 30 days of the first prescription (IRR 2.18, 95% CI 1.06–4.48), but not during prolonged exposure. However, compared with 30 days before the first prescription as well as exposure periods within 30 days of the first prescription, there was a lower risk during the subsequent exposure (IRRs 0.49 and 0.60, respectively). Similar results to the main analysis were also found in the subgroup analysis of intentional poisoning and females, but not in that of accidental poisoning and males. CONCLUSIONS: The risk of all-cause poisoning was higher shortly before and after the first MPH prescription and became lower during the subsequent prescription period. Our results do not support an association between the use of MPH and an increased risk of all-cause poisoning in children and adolescents and, in fact, suggest that longer-term use of MPH may be associated with a lower risk of all-cause poisoning, although this latter finding requires further study. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40263-021-00824-x

    Ligand-Dependent TrkA Activity in Brain Differentially Affects Spatial Learning and Long-Term Memory

    Get PDF
    ABSTRACT In the central nervous system, the nerve growth factor (NGF) receptor TrkA is expressed primarily in cholinergic neurons that are implicated in spatial learning and memory, whereas the NGF receptor p75 NTR is expressed in many neuronal populations and glia. We asked whether selective TrkA activation may have a different impact on learning, short-term memory, and long-term memory. We also asked whether TrkA activation might affect cognition differently in wild-type mice versus mice with cognitive deficits due to transgenic overexpression of mutant amyloid-precursor protein (APP mice). Mice were treated with wild-type NGF (a ligand of TrkA and p75 NTR ) or with selective pharmacological agonists of TrkA that do not bind to p75 NTR . In APP mice, the selective TrkA agonists significantly improved learning and short-term memory. These improvements are associated with a reduction of soluble A␤ levels in the cortex and AKT activation in the cortex and hippocampus. However, this improved phenotype did not translate into improved long-term memory. In normal wild-type mice, none of the treatments affected learning or short-term memory, but a TrkA-selective agonist caused persistent deficits in long-term memory. The deficit in wild-type mice was associated temporally, in the hippocampus, with increased AKT activity, increased brain-derived neurotrophic factor precursor, increased neurotrophin receptor homolog-2 (p75-related protein), and long-term depression. Together, these data indicate that selective TrkA activation affects cognition but does so differently in impaired APP mice versus normal wild-type mice. Understanding mechanisms that govern learning and memory is important for better treatment of cognitive disorders
    corecore