12 research outputs found

    Progress toward an ambulatory pump-lung

    Get PDF
    ObjectivesCurrently available therapies for acute and chronic lung diseases have not been effective and have various problems associated with the technologies used. We present a novel active mixing pump-lung with the goal of providing total respiratory support to ambulatory patients.MethodsThe pump-lung is based on the concept of active mixing oxygenation within a constrained vortex. The rotation of hollow-fiber membranes disrupts the concentration boundary layer, increasing gas exchange efficiency, and simultaneously pumps the blood. Consequently, the amount of membranes required to achieve gas transfer sufficient for total respiratory support is considerably small. A series of studies, including computational design, experimental bench testing, and in vivo animal experiments, have been performed to implement this concept into a viable artificial pump-lung device.ResultsA series of pump-lung prototypes with a membrane surface area of 0.17 to 0.5 m2 were designed and characterized in vitro with bovine blood, demonstrating extremely high gas exchange efficiency. The prototype with a gas exchange surface area of 0.5 m2 was evaluated in calves. The device provided oxygen transfer of approximately 115 mL/min for respiratory support of an animal for up to 5 days.ConclusionsProgress to date suggests a high likelihood of success for an extracorporeal shorter-term lung that can be switched in and out like dialysis devices. Our device is unique in that it incorporates an integrated pumping and active mixing principle for excellent gas transfer and eliminates the need of the native right ventricle’s ability to power blood through the artificial and natural lungs

    Arterial heparan sulfate is negatively associated with hyperglycemia and atherosclerosis in diabetic monkeys

    Get PDF
    BACKGROUND: Arterial proteoglycans are implicated in the pathogenesis of atherosclerosis by their ability to trap plasma lipoproteins in the arterial wall and by their influence on cellular migration, adhesion and proliferation. In addition, data have suggested an anti-atherogenic role for heparan sulfate proteoglycans and a pro-atherogenic role for dermatan sulfate proteoglycans. Using a non-human primate model for human diabetes, studies examined diabetes-induced changes in arterial proteoglycans that may increase susceptibility to atherosclerosis. METHODS: Control (n = 7) and streptozotocin-induced diabetic (n = 8) cynomolgous monkeys were assessed for hyperglycemia by measurement of plasma glycated hemoglobin (GHb). Thoracic aortas obtained at necropsy, were extracted with 4 M guanidine HCL and proteoglycans were measured as hexuronic acid. Atherosclerosis was measured by enzymatic analysis of extracted tissue cholesterol. Glycosaminoglycan chains of arterial proteoglycans were released with papain, separated by agarose electrophoresis and analysed by scanning densitometry. RESULTS: Tissue cholesterol was positively associated with hexuronic acid content in diabetic arteries (r = .82, p < .025) but not in control arteries. Glycosaminoglycan chain analysis demonstrated that dermatan sulfate was associated with increased tissue cholesterol in both control (r = .8, p < 0.05) and diabetic (r = .8, p < .025) arteries, whereas a negative relationship was observed between heparan sulfate and tissue cholesterol in diabetic arteries only (r = -.7, p < .05). GHb, which was significantly higher in diabetic animals (8.2 ± 0.9 vs 3.8 ± 0.2%, p < .0005) was negatively associated with heparan sulfate in diabetic arteries (r = -.7, p < .05). CONCLUSIONS: These data implicate hyperglycemia induced modifications in arterial proteoglycans that may promote atherosclerosis
    corecore