101 research outputs found

    Knockdown of RNA interference pathway genes in western corn rootworm, Diabrotica virgifera virgifera, identifies no fitness costs associated with Argonaute 2 or Dicer-2

    Get PDF
    The use of transgenic crops that induce silencing of essential genes using double-stranded RNA (dsRNA) through RNA interference (RNAi) in western corn rootworm, Diabrotica virgifera virgifera, is likely to be an important component of new technologies for the control of this important corn pest. Previous studies have demonstrated that the dsRNA response in D. v. virgifera depends on the presence of RNAi pathway genes including Dicer-2 and Argonaute 2, and that down-regulation of these genes limits the lethality of environmental dsRNA. A potential resistance mechanism to lethal dsRNA may involve loss of function of RNAi pathway genes. However, the potential for resistance to evolve may depend on whether these pathway genes have essential functions such that the loss of function of core proteins in the RNAi pathway will have fitness costs in D. v. virgifera. Fitness costs associated with potential resistance mechanisms have a central role in determining how resistance can evolve to RNAi technologies in western corn rootworm. We evaluated the effect of dsRNA and microRNA pathway gene knockdown on the development of D. v. virgifera larvae through short-term and long-term exposures to dsRNA for Dicer and Argonaute genes. Downregulation of Argonaute 2, Dicer-2, Dicer-1 did not significantly affect larval survivorship or development through short and long-term exposure to dsRNA. However, downregulation of Argonaute 1 reduced larval survivorship and delayed development. The implications of these results as they relate to D. v. virgifera resistance to lethal dsRNA are discussed

    Knockdown of RNA Interference Pathway Genes in Western Corn Rootworms (\u3ci\u3eDiabrotica virgifera virgifera\u3c/i\u3e Le Conte) Demonstrates a Possible Mechanism of Resistance to Lethal dsRNA

    Get PDF
    RNA interference (RNAi) is being developed as a potential tool for insect pest management. Increased understanding of the RNAi pathway in target insect pests will provide information to use this technology effectively and to inform decisions related to resistant management strategies for RNAi based traits. Dicer 2 (Dcr2), an endonuclease responsible for formation of small interfering RNA’s and Argonaute 2 (Ago2), an essential catalytic component of the RNA-induced silencing complex (RISC) have both been associated with the RNAi pathway in a number of different insect species including the western corn rootworm, Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). We identified both genes from a transcriptome library generated from different tissues and developmental stages of the western corn rootworm, an important target pest for transgenic plants expressing dsRNA targeting essential genes. The expression of these genes was suppressed by more than 90% after injecting gene specific dsRNA into adult rootworms. The injected beetles were then fed vATPase A dsRNA which has previously been demonstrated to cause mortality in western corn rootworm adults. The suppression of both RNAi pathway genes resulted in reduced mortality after subsequent exposure to lethal concentrations of vATPase A dsRNA as well as increased vATPase A expression relative to control treatments. Injections with dsRNA for a non-lethal target sequence (Laccase 2) did not affect mortality or expression caused by vATPase A dsRNA indicating that the results observed with Argo and Dicer dsRNA were not caused by simple competition among different dsRNA’s. These results confirm that both genes play an important role in the RNAi pathway for western corn rootworms and indicate that selection pressures that potentially affect the expression of these genes may provide a basis for future studies to understand potential mechanisms of resistance

    Parameters for Successful Parental RNAi as An Insect Pest Management Tool in Western Corn Rootworm, \u3ci\u3eDiabrotica virgifera virgifera\u3c/i\u3e

    Get PDF
    Parental RNAi (pRNAi) is an RNA interference response where the gene knockdown phenotype is observed in the progeny of the treated organism. pRNAi has been demonstrated in female western corn rootworms (WCR) via diet applications and has been described as a potential approach for rootworm pest management. However, it is not clear if plant-expressed pRNAi can provide effective control of next generation WCR larvae in the field. In this study, we evaluated parameters required to generate a successful pRNAi response in WCR for the genes brahma and hunchback. The parameters tested included a concentration response, duration of the dsRNA exposure, timing of the dsRNA exposure with respect to the mating status in WCR females, and the effects of pRNAi on males. Results indicate that all of the above parameters affect the strength of pRNAi phenotype in females. Results are interpreted in terms of how this technology will perform in the field and the potential role for pRNAi in pest and resistance management strategies. More broadly, the described approaches enable examination of the dynamics of RNAi response in insects beyond pRNAi and crop pests

    Distinct fitness costs associated with the knockdown of RNAi pathway genes in western corn rootworm adults

    Get PDF
    RNA interference (RNAi) based approaches can potentially be used to control insect pests. These approaches may depend on the usage of microRNA (miRNA) or double stranded RNA (dsRNA) mediated gene knockdown, which likely involves proteins that regulate these pathways, such as Argonaute 1 (Ago1), Argonaute 2 (Ago2), Dicer 1 (Dcr1), Dicer 2 (Dcr2), and Drosha in insects. We previously performed functional characterization of Ago2 and Dcr2 of western corn rootworm (WCR), Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae) and observed that knockdown of Ago2 and Dcr2 ameliorated the lethal effect induced by the dsRNA-mediated knockdown of an essential gene in WCR, thereby confirming the involvement of Ago2 and Dcr2 in the dsRNA pathway. In the current study, we identified and characterized additional members of the Argonaute and Dicer gene families, namely Ago1, Ago3, Aubergine, and Dcr1, in a previously developed WCR transcriptome. We also identified a Drosha homolog in the same transcriptome. We evaluated the impacts on WCR adult fitness associated with the dsRNA-mediated knockdown of Ago1, Ago2, Dcr1, Dcr2, and Drosha genes. Among these putative RNAi pathway genes, only the knockdown of Ago1 incurred significant fitness costs such as reduced survival and oviposition rate, as well as decreased egg viability. The present study, to our knowledge, represents the first report showing that Ago1 is critical to the survival of insect adults. Our findings suggest that Ago1 plays an essential role in broader life stages of an insect than previously thought. Importantly, since fitness costs were not observed, downregulation or loss of function of RNAi pathway genes such as Ago2 or Dcr2 may confer resistance to pest control measures that rely on the normal functions of these genes. However, the precise roles of these genes under field conditions (i.e., in the presence of possible viral pathogens) requires further investigation

    Parameters for Successful Parental RNAi as An Insect Pest Management Tool in Western Corn Rootworm, \u3ci\u3eDiabrotica virgifera virgifera\u3c/i\u3e

    Get PDF
    Parental RNAi (pRNAi) is an RNA interference response where the gene knockdown phenotype is observed in the progeny of the treated organism. pRNAi has been demonstrated in female western corn rootworms (WCR) via diet applications and has been described as a potential approach for rootworm pest management. However, it is not clear if plant-expressed pRNAi can provide effective control of next generation WCR larvae in the field. In this study, we evaluated parameters required to generate a successful pRNAi response in WCR for the genes brahma and hunchback. The parameters tested included a concentration response, duration of the dsRNA exposure, timing of the dsRNA exposure with respect to the mating status in WCR females, and the effects of pRNAi on males. Results indicate that all of the above parameters affect the strength of pRNAi phenotype in females. Results are interpreted in terms of how this technology will perform in the field and the potential role for pRNAi in pest and resistance management strategies. More broadly, the described approaches enable examination of the dynamics of RNAi response in insects beyond pRNAi and crop pests

    Elucidation of the MicroRNA Transcriptome in Western Corn Rootworm Reveals Its Dynamic and Evolutionary Complexity

    Get PDF
    Diabrotica virgifera virgifera (western corn rootworm, WCR) is one of the most destructive agricultural insect pests in North America. It is highly adaptive to environmental stimuli and crop protection technologies. However, little is known about the underlying genetic basis of WCR behavior and adaptation. More specifically, the involvement of small RNAs (sRNAs), especially microRNAs (miRNAs), a class of endogenous small non-coding RNAs that regulate various biological processes, has not been examined, and the datasets of putative sRNA sequences have not previously been generated for WCR. To achieve a comprehensive collection of sRNA transcriptomes in WCR, we constructed, sequenced, and analyzed sRNA libraries from different life stages of WCR and northern corn rootworm (NCR), and identified 101 conserved precursor miRNAs (pre-miRNAs) in WCR and other Arthropoda. We also identified 277 corn rootworm specific pre-miRNAs. Systematic analyses of sRNA populations in WCR revealed that its sRNA transcriptome, which includes PIWI-interacting RNAs (piRNAs) and miRNAs, undergoes a dynamic change throughout insect development. Phylogenetic analysis of miRNA datasets from model species reveals that a large pool of species-specific miRNAs exists in corn rootworm; these are potentially evolutionarily transient. Comparisons of WCR miRNA clusters to other insect species highlight conserved miRNA-regulated processes that are common to insects. Parallel Analysis of RNA Ends (PARE) also uncovered potential miRNA-guided cleavage sites in WCR. Overall, this study provides a new resource for studying the sRNA transcriptome and miRNA-mediated gene regulation in WCR and other Coleopteran insects

    Insecticidal Activity of \u3ci\u3eBacillus thuringiensis\u3c/i\u3e Cry1Bh1 against \u3ci\u3eOstrinia nubilalis\u3c/i\u3e (HĂĽbner) (Lepidoptera: Crambidae) and Other Lepidopteran Pests

    Get PDF
    Bacillus thuringiensis is an important source of insect resistance traits in commercial crops. In an effort to prolong B. thuringiensis trait durability, insect resistance management programs often include combinations of insecticidal proteins that are not cross resistant or have demonstrable differences in their site of action as a means to mitigate the development of resistant insect populations. In this report, we describe the activity spectrum of a novel B. thuringiensis Cry protein, Cry1Bh1, against several lepidopteran pests, including laboratory-selected B. thuringiensis-resistant strains of Ostrinia nubilalis and Heliothis virescens and progeny of field-evolved B. thuringiensis-resistant strains of Plutella xylostella and Spodoptera frugiperda. Cry1Bh1 is active against susceptible and B. thuringiensis-resistant colonies of O. nubilalis, P. xylostella, and H. virescens in laboratory diet-based assays, implying a lack of cross-resistance in these insects. However, Cry1Bh1 is not active against susceptible or Cry1F-resistant S. frugiperda. Further, Cry1Bh1 does not compete with Cry1Fa or Cry1Ab for O. nubilalis midgut brush border membrane binding sites. Cry1Bh1-expressing corn, while not completely resistant to insect damage, provided significantly better leaf protection against Cry1Fa-resistant O. nubilalis than did Cry1Fa-expressing hybrid corn. The lack of cross-resistance with Cry1Ab and Cry1Fa along with independent membrane binding sites in O. nubilalis makes Cry1Bh1 a candidate to further optimize for in-plant resistance to this pest

    RNAi as a management tool for the western corn rootworm, \u3ci\u3eDiabrotica virgifera virgifera\u3c/i\u3e

    Get PDF
    The western corn rootworm (WCR), Diabrotica virgifera virgifera, is the most important pest of corn in the US Corn Belt. Economic estimates indicate that costs of control and yield loss associated with WCR damage exceed $US 1 billion annually. Historically, corn rootworm management has been extremely difficult because of its ability to evolve resistance to both chemical insecticides and cultural control practices. Since 2003, the only novel commercialized developments in rootworm management have been transgenic plants expressing Bt insecticidal proteins. Four transgenic insecticidal proteins are currently registered for rootworm management, and field resistance to proteins from the Cry3 family highlights the importance of developing traits with new modes of action. One of the newest approaches for controlling rootworm pests involves RNA interference (RNAi). This review describes the current understanding of the RNAi mechanisms in WCR and the use of this technology for WCR management. Further, the review addresses ecological risk assessment of RNAi and insect resistance management of RNAi for corn rootworm

    RNAi as a management tool for the western corn rootworm, \u3ci\u3eDiabrotica virgifera virgifera\u3c/i\u3e

    Get PDF
    The western corn rootworm (WCR), Diabrotica virgifera virgifera, is the most important pest of corn in the US Corn Belt. Economic estimates indicate that costs of control and yield loss associated with WCR damage exceed $US 1 billion annually. Historically, corn rootworm management has been extremely difficult because of its ability to evolve resistance to both chemical insecticides and cultural control practices. Since 2003, the only novel commercialized developments in rootworm management have been transgenic plants expressing Bt insecticidal proteins. Four transgenic insecticidal proteins are currently registered for rootworm management, and field resistance to proteins from the Cry3 family highlights the importance of developing traits with new modes of action. One of the newest approaches for controlling rootworm pests involves RNA interference (RNAi). This review describes the current understanding of the RNAi mechanisms in WCR and the use of this technology for WCR management. Further, the review addresses ecological risk assessment of RNAi and insect resistance management of RNAi for corn rootworm

    PARENTAL RNAI SUPPRESSION OF HUNCHBACK GENE TO CONTROL HEMIPTERAN PESTS

    Get PDF
    This disclosure concerns nucleic acid molecules and methods of use thereof for control of hemipteran pests through RNA interference-mediated inhibition of target coding and transcribed non-coding sequences in hemipteran pests. The dis closure also concerns methods for making transgenic plants that express nucleic acid molecules useful for the control of hemipteran pests, and the plant cells and plants obtained thereby
    • …
    corecore