1,090 research outputs found

    Biosurveillance in Central Asia: Successes and Challenges of Tick-Borne Disease Research in Kazakhstan and Kyrgyzstan

    Get PDF
    Central Asia is a vast geographic region that includes five former Soviet Union republics: Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan. The region has a unique infectious disease burden, and a history that includes Silk Road trade routes and networks that were part of the anti-plague and biowarfare programs in the former Soviet Union. Post Soviet Union biosurveillance research in this unique area of the world has met with several challenges, including lack of funding and resources to independently conduct hypothesis driven, peer-review quality research. Strides have been made, however, to increase scientific engagement and capability. Kazakhstan and Kyrgyzstan are examples of countries where biosurveillance research has been successfully conducted, particularly with respect to especially dangerous pathogens. In this review we describe in detail the successes, challenges and opportunities of conducting biosurveillance in Central Asia as exemplified by our recent research activities on ticks and tick-borne diseases in Kazakhstan and Kyrgyzstan

    Cooperative Research and Infectious Disease Surveillance: A 2021 Epilogue.

    Get PDF
    As the world looks forward to turning a corner in the face of the COVID-19 pandemic, it becomes increasingly evident that international research cooperation and dialogue is necessary to end this global catastrophe. Last year, we initiated a research topic: "Infectious Disease Surveillance: Cooperative Research in Response to Recent Outbreaks, Including COVID-19," which aimed at featuring manuscripts focused on the essential link between surveillance and cooperative research for emerging and endemic diseases, and highlighting scientific partnerships in countries under-represented in the scientific literature. Here we recognize the body of work published from our manuscript call that resulted in over 50 published papers. This current analysis describes articles and authors from a variety of funded and unfunded international sources. The work exemplifies successful research and publications which are frequently cooperative, and may serve as a basis to model further global scientific engagements

    The Convergence of High-Consequence Livestock and Human Pathogen Research and Development: A Paradox of Zoonotic Disease

    Get PDF
    Citation: Michelotti, J.M.; Yeh, K.B.; Beckham, T.R.; Colby, M.M.; Dasgupta, D.; Zuelke, K.A.; Olinger, G.G. The Convergence of High-Consequence Livestock and Human Pathogen Research and Development: A Paradox of Zoonotic Disease. Trop. Med. Infect. Dis. 2018, 3, 55.The World Health Organization (WHO) estimates that zoonotic diseases transmitted from animals to humans account for 75 percent of new and emerging infectious diseases. Globally, high-consequence pathogens that impact livestock and have the potential for human transmission create research paradoxes and operational challenges for the high-containment laboratories that conduct work with them. These specialized facilities are required for conducting all phases of research on high-consequence pathogens (basic, applied, and translational) with an emphasis on both the generation of fundamental knowledge and product development. To achieve this research mission, a highly-trained workforce is required and flexible operational methods are needed. In addition, working with certain pathogens requires compliance with regulations such as the Centers for Disease Control (CDC) and the U.S. Department of Agriculture (USDA) Select Agent regulations, which adds to the operational burden. The vast experience from the existing studies at Plum Island Animal Disease Center, other U.S. laboratories, and those in Europe and Australia with biosafety level 4 (BSL-4) facilities designed for large animals, clearly demonstrates the valuable contribution this capability brings to the efforts to detect, prepare, prevent and respond to livestock and potential zoonotic threats. To raise awareness of these challenges, which include biosafety and biosecurity issues, we held a workshop at the 2018 American Society for Microbiology (ASM) Biothreats conference to further discuss the topic with invited experts and audience participants. The workshop covered the subjects of research funding and metrics, economic sustainment of drug and vaccine development pipelines, workforce turnover, and the challenges of maintaining operational readiness of high containment laboratories

    Operationalizing Cooperative Research for Infectious Disease Surveillance: Lessons Learned and Ways Forward.

    Get PDF
    The current COVID-19 pandemic demonstrates the need for urgent and on-demand solutions to provide diagnostics, treatment and preventative measures for infectious disease outbreaks. Once solutions are developed, meeting capacities depends on the ability to mitigate technical, logistical and production issues. While it is difficult to predict the next outbreak, augmenting investments in preparedness, such as infectious disease surveillance, is far more effective than mustering last-minute response funds. Bringing research outputs into practice sooner rather than later is part of an agile approach to pivot and deliver solutions. Cooperative multi- country research programs, especially those funded by global biosecurity programs, develop capacity that can be applied to infectious disease surveillance and research that enhances detection, identification, and response to emerging and re-emerging pathogens with epidemic or pandemic potential. Moreover, these programs enhance trust building among partners, which is essential because setting expectation and commitment are required for successful research and training. Measuring research outputs, evaluating outcomes and justifying continual investments are essential but not straightforward. Lessons learned include those related to reducing biological threats and maturing capabilities for national laboratory diagnostics strategy and related health systems. Challenges, such as growing networks, promoting scientific transparency, data and material sharing, sustaining funds and developing research strategies remain to be fully resolved. Here, experiences from several programs highlight successful partnerships that provide ways forward to address the next outbreak

    Climate change and infectious disease: A prologue on multidisciplinary cooperation and predictive analytics

    Get PDF
    Climate change impacts global ecosystems at the interface of infectious disease agents and hosts and vectors for animals, humans, and plants. The climate is changing, and the impacts are complex, with multifaceted effects. In addition to connecting climate change and infectious diseases, we aim to draw attention to the challenges of working across multiple disciplines. Doing this requires concentrated efforts in a variety of areas to advance the technological state of the art and at the same time implement ideas and explain to the everyday citizen what is happening. The world's experience with COVID-19 has revealed many gaps in our past approaches to anticipating emerging infectious diseases. Most approaches to predicting outbreaks and identifying emerging microbes of major consequence have been with those causing high morbidity and mortality in humans and animals. These lagging indicators offer limited ability to prevent disease spillover and amplifications in new hosts. Leading indicators and novel approaches are more valuable and now feasible, with multidisciplinary approaches also within our grasp to provide links to disease predictions through holistic monitoring of micro and macro ecological changes. In this commentary, we describe niches for climate change and infectious diseases as well as overarching themes for the important role of collaborative team science, predictive analytics, and biosecurity. With a multidisciplinary cooperative “all call,” we can enhance our ability to engage and resolve current and emerging problems

    Building Scientific Capability and Reducing Biological Threats: The Effect of Three Cooperative Bio-Research Programs in Kazakhstan.

    Get PDF
    Cooperative research programs aimed at reducing biological threats have increased scientific capabilities and capacities in Kazakhstan. The German Federal Foreign Office's German Biosecurity Programme, the United Kingdom's International Biological Security Programme and the United States Defense Threat Reduction Agency's Biological Threat Reduction Program provide funding for partner countries, like Kazakhstan. The mutual goals of the programs are to reduce biological threats and enhance global health security. Our investigation examined these cooperative research programs, summarizing major impacts they have made, as well as common successes and challenges. By mapping various projects across the three programs, research networks are highlighted which demonstrate best communication practices to share results and reinforce conclusions. Our team performed a survey to collect results from Kazakhstani partner scientists on their experiences that help gain insights into enhancing day-to-day approaches to conducting cooperative scientific research. This analysis will serve as a basis for a capability maturity model as used in industry, and in addition builds synergy for future collaborations that will be essential for quality and sustainment

    Are fewer cases of diabetes mellitus diagnosed in the months after SARS-CoV-2 infection? A population-level view in the EHR-based RECOVER program

    Get PDF
    Long-term sequelae of severe acute respiratory coronavirus-2 (SARS-CoV-2) infection may include increased incidence of diabetes. Here we describe the temporal relationship between new type 2 diabetes and SARS-CoV-2 infection in a nationwide database. We found that while the proportion of newly diagnosed type 2 diabetes increased during the acute period of SARS-CoV-2 infection, the mean proportion of new diabetes cases in the 6 months post-infection was about 83% lower than the 6 months preinfection. These results underscore the need for further investigation to understand the timing of new diabetes after COVID-19, etiology, screening, and treatment strategies

    Are fewer cases of diabetes mellitus diagnosed in the months after SARS-CoV-2 infection? A population-level view in the EHR-based RECOVER program

    Get PDF
    Long-term sequelae of severe acute respiratory coronavirus-2 (SARS-CoV-2) infection may include increased incidence of diabetes. Here we describe the temporal relationship between new type 2 diabetes and SARS-CoV-2 infection in a nationwide database. We found that while the proportion of newly diagnosed type 2 diabetes increased during the acute period of SARS-CoV-2 infection, the mean proportion of new diabetes cases in the 6 months post-infection was about 83% lower than the 6 months preinfection. These results underscore the need for further investigation to understand the timing of new diabetes after COVID-19, etiology, screening, and treatment strategies

    A Database of Wing Diversity in the Hawaiian Drosophila

    Get PDF
    Background. Within genus Drosophila, the endemic Hawaiian species offer some of the most dramatic examples of morphological and behavioral evolution. The advent of the Drosophila grimshawi genome sequence permits genes of interest to be readily cloned from any of the hundreds of species of Hawaiian Drosophila, offering a powerful comparative approach to defining molecular mechanisms of species evolution. A key step in this process is to survey the Hawaiian flies for characters whose variation can be associated with specific candidate genes. The wings provide an attractive target for such studies: Wings are essentially two dimensional, and genes controlling wing shape, vein specification, pigment production, and pigment pattern evolution have all been identified in Drosophila. Methodology/Principal Findings. We present a photographic database of over 180 mounted, adult wings from 73 species of Hawaiian Drosophila. The image collection, available at FlyBase.org, includes 53 of the 112 known species of picture wing\u27\u27 Drosophila, and several species from each of the other major Hawaiian groups, including the modified mouthparts, modified tarsus, antopocerus, and haleakalae (fungus feeder) groups. Direct image comparisons show that major wing shape changes can occur even between closely related species, and that pigment pattern elements can vary independently of each other. Among the 30 species closest to grimshawi, diverse visual effects are achieved by altering a basic pattern of seven wing spots. Finally, we document major pattern variations within species, which appear to result from reduced diffusion of pigment precursors through the wing blade. Conclusions/Significance. The database highlights the striking variation in size, shape, venation, and pigmentation in Hawaiian Drosophila, despite their generally low levels of DNA sequence divergence. In several independent lineages, highly complex patterns are derived from simple ones. These lineages offer a promising model system to study the evolution of complexity
    corecore