116 research outputs found

    siRNAs Induce Efficient RNAi Response in Bombyx mori Embryos

    Get PDF
    Short interference RNA (siRNA) is widely used in mammalian cells. In insects, however, reports concerning the suitablility of siRNA in vivo is very limited compared with that of long dsRNA, which is thought to be more effective. There is insufficient information on the essential rules of siRNA design in insects, as very few siRNAs have been tested in this context. To establish an effective method of gene silencing using siRNA in vivo in insects, we determined the effects of siRNA on seven target genes. We designed siRNAs according to a new guideline and injected them into eggs of Bombyx mori. At the mRNA level, the expression of most of these genes was successfully silenced, down to less than half the constitutive level, which in some cases led to the development of distinctive phenotypes. In addition, we observed stronger effect of siRNA both on the mRNA level and the phenotype than that of long dsRNA under comparable conditions. These results indicate that direct injection of siRNA is an effective reverse-genetics tool for the analysis of embryogenesis in vivo in insects

    Pogostick: A New Versatile piggyBac Vector for Inducible Gene Over-Expression and Down-Regulation in Emerging Model Systems

    Get PDF
    Non-traditional model systems need new tools that will enable them to enter the field of functional genetics. These tools should enable the exploration of gene function, via knock-downs of endogenous genes, as well as over-expression and ectopic expression of transgenes.We constructed a new vector called Pogostick that can be used to over-express or down-regulate genes in organisms amenable to germ line transformation by the piggyBac transposable element. Pogostick can be found at www.addgene.org, a non-profit plasmid repository. The vector currently uses the heat-shock promoter Hsp70 from Drosophila to drive transgene expression and, as such, will have immediate applicability to organisms that can correctly interpret this promotor sequence. We detail how to clone candidate genes into this vector and test its functionality in Drosophila by targeting a gene coding for the fluorescent protein DsRed. By cloning a single DsRed copy into the vector, and generating transgenic lines, we show that DsRed mRNA and protein levels are elevated following heat-shock. When cloning a second copy of DsRed in reverse orientation into a flanking site, and transforming flies constitutively expressing DsRed in the eyes, we show that endogenous mRNA and protein levels drop following heat-shock. We then test the over-expression vector, containing the complete cDNA of Ultrabithorax (Ubx) gene, in an emerging model system, Bicyclus anynana. We produce a transgenic line and show that levels of Ubx mRNA expression rise significantly following a heat-shock. Finally, we show how to obtain genomic sequence adjacent to the Pogostick insertion site and to estimate transgene copy number in genomes of transformed individuals.This new vector will allow emerging model systems to enter the field of functional genetics with few hurdles

    Dissecting mitosis by RNAi in Drosophila tissue culture cells

    Get PDF
    Here we describe a detailed methodology to study the function of genes whose products function during mitosis by dsRNA-mediated interference (RNAi) in cultured cells of Drosophila melanogaster. This procedure is particularly useful for the analysis of genes for which genetic mutations are not available or for the dissection of complicated phenotypes derived from the analysis of such mutants. With the advent of whole genome sequencing it is expected that RNAi-based screenings will be one method of choice for the identification and study of novel genes involved in particular cellular processes. In this paper we focused particularly on the procedures for the proper phenotypic analysis of cells after RNAi-mediated depletion of proteins required for mitosis, the process by which the genetic information is segregated equally between daughter cells. We use RNAi of the microtubule-associated protein MAST/Orbit as an example for the usefulness of the technique

    Prevention of Apoptosis by Mitochondrial Phosphatase PGAM5 in the Mushroom Body Is Crucial for Heat Shock Resistance in Drosophila melanogaster

    Get PDF
    The heat shock (HS) response is essential for survival of all organisms. Although the machinery of the HS response has been extensively investigated at the cellular level, it is poorly understood at the level of the organism. Here, we show the crucial role of the mushroom body (MB) in the HS response in Drosophila. Null mutants of the mitochondrial phosphatase Drosophila PGAM5 (dPGAM5) exhibited increased vulnerability to HS, which was reversed by MB-specific expression of the caspase inhibitor p35, and similar vulnerability was induced in wild-type flies by knockdown of MB dPGAM5. Elimination of the MB did not affect the HS response of wild-type flies, but did increase the resistance of dPGAM5-deficient flies to HS. Thus, the MB may possess an apoptosis-dependent toxic function, the suppression of which by dPGAM5 appears to be crucial for HS resistance

    Efficient Construction of an Inverted Minimal H1 Promoter Driven siRNA Expression Cassette: Facilitation of Promoter and siRNA Sequence Exchange

    Get PDF
    RNA interference (RNAi), mediated by small interfering RNA (siRNA), is an effective method used to silence gene expression at the post-transcriptional level. Upon introduction into target cells, siRNAs incorporate into the RNA-induced silencing complex (RISC). The antisense strand of the siRNA duplex then "guides" the RISC to the homologous mRNA, leading to target degradation and gene silencing. In recent years, various vector-based siRNA expression systems have been developed which utilize opposing polymerase III promoters to independently drive expression of the sense and antisense strands of the siRNA duplex from the same template.We show here the use of a ligase chain reaction (LCR) to develop a new vector system called pInv-H1 in which a DNA sequence encoding a specific siRNA is placed between two inverted minimal human H1 promoters (approximately 100 bp each). Expression of functional siRNAs from this construct has led to efficient silencing of both reporter and endogenous genes. Furthermore, the inverted H1 promoter-siRNA expression cassette was used to generate a retrovirus vector capable of transducing and silencing expression of the targeted protein by>80% in target cells.The unique design of this construct allows for the efficient exchange of siRNA sequences by the directional cloning of short oligonucleotides via asymmetric restriction sites. This provides a convenient way to test the functionality of different siRNA sequences. Delivery of the siRNA cassette by retroviral transduction suggests that a single copy of the siRNA expression cassette efficiently knocks down gene expression at the protein level. We note that this vector system can potentially be used to generate a random siRNA library. The flexibility of the ligase chain reaction suggests that additional control elements can easily be introduced into this siRNA expression cassette

    Do teashirt family genes specify trunk identity? Insights from the single tiptop/teashirt homolog of Tribolium castaneum

    Get PDF
    The Drosophila teashirt gene acts in concert with the homeotic selector (Hox) genes to specify trunk (thorax and abdomen) identity. There has been speculation that this trunk-specifying function might be very ancient, dating back to the common ancestor of insects and vertebrates. However, other evidence suggests that the role of teashirt in trunk identity is not well conserved even within the Insecta. To address this issue, we have analyzed the function of Tc-tiotsh, the lone teashirt family member in the red flour beetle, Tribolium castaneum. Although Tc-tiotsh is important for aspects of both embryonic and imaginal development including some trunk features, we find no evidence that it acts as a trunk identity gene. We discuss this finding in the context of recent insights into the evolution and function of the Drosophila teashirt family genes

    A Wnt-Frz/Ror-Dsh Pathway Regulates Neurite Outgrowth in Caenorhabditis elegans

    Get PDF
    One of the challenges to understand the organization of the nervous system has been to determine how axon guidance molecules govern axon outgrowth. Through an unbiased genetic screen, we identified a conserved Wnt pathway which is crucial for anterior-posterior (A/P) outgrowth of neurites from RME head motor neurons in Caenorhabditis elegans. The pathway is composed of the Wnt ligand CWN-2, the Frizzled receptors CFZ-2 and MIG-1, the co-receptor CAM-1/Ror, and the downstream component Dishevelled/DSH-1. Among these, CWN-2 acts as a local attractive cue for neurite outgrowth, and its activity can be partially substituted with other Wnts, suggesting that spatial distribution plays a role in the functional specificity of Wnts. As a co-receptor, CAM-1 functions cell-autonomously in neurons and, together with CFZ-2 and MIG-1, transmits the Wnt signal to downstream effectors. Yeast two-hybrid screening identified DSH-1 as a binding partner for CAM-1, indicating that CAM-1 could facilitate CWN-2/Wnt signaling by its physical association with DSH-1. Our study reveals an important role of a Wnt-Frz/Ror-Dsh pathway in regulating neurite A/P outgrowth

    Both piRNA and siRNA Pathways Are Silencing Transcripts of the Suffix Element in the Drosophila melanogaster Germline and Somatic Cells

    Get PDF
    In the Drosophila melanogaster germline, the piRNA pathway silences retrotransposons as well as other transcribed repetitive elements. Suffix is an unusual short retroelement that was identified both as an actively transcribed repetitive element and also as an element at the 3′ ends of the Drosophila non-LTR F element. The copies of suffix that are F element-independent are far more actively transcribed than their counterparts on the F element. We studied the patterns of small RNAs targeting both strands of suffix in Drosophila ovaries using an RNase protection assay and the analysis of the corresponding RNA sequences from the libraries of total small RNAs. Our results indicate that suffix sense and antisense transcripts are targeted mainly by 23–29 nucleotides in length piRNAs and also by 21 nucleotides in length siRNAs. Suffix sense transcripts actively form longer RNA species, corresponding either to partial digestion products of the RNAi and Piwi pathways or to another RNA silencing mechanism. Both sense and antisense suffix transcripts accumulated in the ovaries of homozygous spn-E, piwi and aub mutants. These results provide evidence that suffix sense and antisense transcripts in the germ line and soma are targeted by both RNAi and Piwi pathways and that a Dicer-independent pathway of biogenesis of siRNAs could exist in Drosophila cells

    Multiple Wnts Redundantly Control Polarity Orientation in Caenorhabditis elegans Epithelial Stem Cells

    Get PDF
    During development, cell polarization is often coordinated to harmonize tissue patterning and morphogenesis. However, how extrinsic signals synchronize cell polarization is not understood. In Caenorhabditis elegans, most mitotic cells are polarized along the anterior-posterior axis and divide asymmetrically. Although this process is regulated by a Wnt-signaling pathway, Wnts functioning in cell polarity have been demonstrated in only a few cells. We analyzed how Wnts control cell polarity, using compound Wnt mutants, including animals with mutations in all five Wnt genes. We found that somatic gonadal precursor cells (SGPs) are properly polarized and oriented in quintuple Wnt mutants, suggesting Wnts are dispensable for the SGPs' polarity, which instead requires signals from the germ cells. Thus, signals from the germ cells organize the C. elegans somatic gonad. In contrast, in compound but not single Wnt mutants, most of the six seam cells, V1–V6 (which are epithelial stem cells), retain their polarization, but their polar orientation becomes random, indicating that it is redundantly regulated by multiple Wnt genes. In contrast, in animals in which the functions of three Wnt receptors (LIN-17, MOM-5, and CAM-1) are disrupted—the stem cells are not polarized and divide symmetrically—suggesting that the Wnt receptors are essential for generating polarity and that they function even in the absence of Wnts. All the seam cells except V5 were polarized properly by a single Wnt gene expressed at the cell's anterior or posterior. The ectopic expression of posteriorly expressed Wnts in an anterior region and vice versa rescued polarity defects in compound Wnt mutants, raising two possibilities: one, Wnts permissively control the orientation of polarity; or two, Wnt functions are instructive, but which orientation they specify is determined by the cells that express them. Our results provide a paradigm for understanding how cell polarity is coordinated by extrinsic signals

    miRNA-Dependent Translational Repression in the Drosophila Ovary

    Get PDF
    Background: The Drosophila ovary is a tissue rich in post-transcriptional regulation of gene expression. Many of the regulatory factors are proteins identified via genetic screens. The more recent discovery of microRNAs, which in other animals and tissues appear to regulate translation of a large fraction of all mRNAs, raised the possibility that they too might act during oogenesis. However, there has been no direct demonstration of microRNA-dependent translational repression in the ovary. Methodology/Principal Findings: Here, quantitative analyses of transcript and protein levels of transgenes with or without synthetic miR-312 binding sites show that the binding sites do confer translational repression. This effect is dependent on the ability of the cells to produce microRNAs. By comparison with microRNA-dependent translational repression in other cell types, the regulated mRNAs and the protein factors that mediate repression were expected to be enriched in sponge bodies, subcellular structures with extensive similarities to the P bodies found in other cells. However, no such enrichment was observed. Conclusions/Significance: Our results reveal the variety of post-transcriptional regulatory mechanisms that operate in the Drosophila ovary, and have implications for the mechanisms of miRNA-dependent translational control used in the ovary.This work was supported in part by NIH grant GM54409 and in part by Research Grant No. 1-FY08-445. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Cellular and Molecular Biolog
    corecore