294 research outputs found

    Conditions for parents' participation in the care of their child in neonatal intensive care – a field study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To promote participation by parents in the care of their child in neonatal intensive care units (NICU), health professionals need better understanding of what facilitates and what obstructs participation. The aim was to elucidate conditions for parents' participation in the care of their child in NICUs.</p> <p>Methods</p> <p>A field study with a hermeneutic lifeworld approach was used and data were collected at two NICUs through participative observations and interviews with representatives of management, staff and parents.</p> <p>Results</p> <p>The results point to a number of contradictions in the way parents were offered the opportunity to participate in neonatal intensive care. Management and staff both had good ambitions to develop ideal care that promoted parent participation. However, the care including the conditions for parental participation was driven by the terms of the staff, routines focusing on the medical-technical care and environment, and budgetary constraints.</p> <p>Conclusion</p> <p>The result shows that tangible strategies need to be developed in NICUs aimed at optimising conditions for parents to be present and involved in the care of their child.</p

    Effect of promoter architecture on the cell-to-cell variability in gene expression

    Get PDF
    According to recent experimental evidence, the architecture of a promoter, defined as the number, strength and regulatory role of the operators that control the promoter, plays a major role in determining the level of cell-to-cell variability in gene expression. These quantitative experiments call for a corresponding modeling effort that addresses the question of how changes in promoter architecture affect noise in gene expression in a systematic rather than case-by-case fashion. In this article, we make such a systematic investigation, based on a simple microscopic model of gene regulation that incorporates stochastic effects. In particular, we show how operator strength and operator multiplicity affect this variability. We examine different modes of transcription factor binding to complex promoters (cooperative, independent, simultaneous) and how each of these affects the level of variability in transcription product from cell-to-cell. We propose that direct comparison between in vivo single-cell experiments and theoretical predictions for the moments of the probability distribution of mRNA number per cell can discriminate between different kinetic models of gene regulation.Comment: 35 pages, 6 figures, Submitte

    Differential Expression of MicroRNAs in Adipose Tissue after Long-Term High-Fat Diet-Induced Obesity in Mice

    Get PDF
    Obesity is a major health concern worldwide which is associated with increased risk of chronic diseases such as metabolic syndrome, cardiovascular disease and cancer. The elucidation of the molecular mechanisms involved in adipogenesis and obesogenesis is of essential importance as it could lead to the identification of novel biomarkers and therapeutic targets for the development of anti-obesity drugs. MicroRNAs (miRNAs) have been shown to play regulatory roles in several biological processes. They have become a growing research field and consist of promising pharmaceutical targets in various fields such as cancer, metabolism, etc. The present study investigated the possible implication of miRNAs in adipose tissue during the development of obesity using as a model the C57BLJ6 mice fed a high-fat diet

    Maternal distress and perceptions of infant development following extracorporeal membrane oxygenation and conventional ventilation for persistent pulmonary hypertension

    Full text link
    Neurodevelopmental outcome and concurrent maternal distress were examined for infants who suffered persistent pulmonary hypertension at birth and were treated with either extracorporeal membrane oxygenation (ECMO) ( n = 19) or conventional ventilation (CV) ( n = 15). Mothers were asked to complete inventories assessing their infant's (mean age 8.74 months) developmental growth as well as their own psychological health. Relevant sociodemographic and treatment parameters were also entered into the analysis. The results indicated that ECMO and CV infants did not differ on developmental indices and impairment rates were 15–23% respectively, similar to previous reports, in addition, ECMO and CV mothers did not differ in their reports of psychological distress. Correlational analyses revealed that length of treatment for ECMO but not CV infants significantly predicted developmental delay and maternal distress. For CV mothers, maternal distress was associated with the perception of delayed language. The results are discussed in terms of the limited morbidity associated with ECMO and CV interventions and the possible role of a ‘vulnerable child syndrome’ in understanding the maternal-infant relationship following ECMO therapy.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/73367/1/j.1365-2214.1995.tb00410.x.pd

    Adenomatous Polyposis Coli Regulates Axon Arborization and Cytoskeleton Organization via Its N-Terminus

    Get PDF
    Conditional deletion of APC leads to marked disruption of cortical development and to excessive axonal branching of cortical neurons. However, little is known about the cell biological basis of this neuronal morphological regulation. Here we show that APC deficient cortical neuronal growth cones exhibit marked disruption of both microtubule and actin cytoskeleton. Functional analysis of the different APC domains revealed that axonal branches do not result from stabilized β-catenin, and that the C-terminus of APC containing microtubule regulatory domains only partially rescues the branching phenotype. Surprisingly, the N-terminus of APC containing the oligomerization domain and the armadillo repeats completely rescues the branching and cytoskeletal abnormalities. Our data indicate that APC is required for appropriate axon morphological development and that the N-terminus of APC is important for regulation of the neuronal cytoskeleton

    A Coarse-Grained Biophysical Model of E. coli and Its Application to Perturbation of the rRNA Operon Copy Number

    Get PDF
    We propose a biophysical model of Escherichia coli that predicts growth rate and an effective cellular composition from an effective, coarse-grained representation of its genome. We assume that E. coli is in a state of balanced exponential steadystate growth, growing in a temporally and spatially constant environment, rich in resources. We apply this model to a series of past measurements, where the growth rate and rRNA-to-protein ratio have been measured for seven E. coli strains with an rRNA operon copy number ranging from one to seven (the wild-type copy number). These experiments show that growth rate markedly decreases for strains with fewer than six copies. Using the model, we were able to reproduce these measurements. We show that the model that best fits these data suggests that the volume fraction of macromolecules inside E. coli is not fixed when the rRNA operon copy number is varied. Moreover, the model predicts that increasing the copy number beyond seven results in a cytoplasm densely packed with ribosomes and proteins. Assuming that under such overcrowded conditions prolonged diffusion times tend to weaken binding affinities, the model predicts that growth rate will not increase substantially beyond the wild-type growth rate, as indicated by other experiments. Our model therefore suggests that changing the rRNA operon copy number of wild-type E. coli cells growing in a constant rich environment does not substantially increase their growth rate. Other observations regarding strains with an altered rRNA operon copy number, such as nucleoid compaction and the rRNA operon feedback response, appear to be qualitatively consistent with this model. In addition, we discuss possible design principles suggested by the model and propose further experiments to test its validity

    Evaluación del impacto de la prematuridad en la salud mental de puérperas

    Get PDF
    O presente estudo tem como objetivo comparar a ocorrência de sintomas de ansiedade e depressão em mães de bebês prematuros e mães de bebês a termo. Trata-se de um estudo transversal, descritivo, de abordagem quantitativa. As participantes (n=40) foram submetidas à avaliação de rastreamento executada como rotina pelo Serviço de Psicologia de um hospital filantrópico do interior paulista mediante a aplicação da Escala Hospitalar de Ansiedade e Depressão (HAD). Constatou-se que, entre as mães de bebês prematuros, 75% apresentavam sintomas clinicamente significativos de ansiedade e 50% apresentavam sintomas clinicamente significativos de depressão. Já entre as mães de bebês a termo, 65% não apresentavam sintomas clinicamente significativos de ansiedade e tampouco depressão. Ademais, a superioridade da pontuação média obtida pelas primeiras alcançou significância estatística. Os resultados corroboram a literatura, que sugere que a prematuridade tende a ter impacto negativo na saúde mental da mulher que vivencia essa situação

    The Retrohoming of Linear Group II Intron RNAs in Drosophila melanogaster Occurs by Both DNA Ligase 4–Dependent and –Independent Mechanisms

    Get PDF
    Mobile group II introns are bacterial retrotransposons that are thought to have invaded early eukaryotes and evolved into introns and retroelements in higher organisms. In bacteria, group II introns typically retrohome via full reverse splicing of an excised intron lariat RNA into a DNA site, where it is reverse transcribed by the intron-encoded protein. Recently, we showed that linear group II intron RNAs, which can result from hydrolytic splicing or debranching of lariat RNAs, can retrohome in eukaryotes by performing only the first step of reverse splicing, ligating their 3′ end to the downstream DNA exon. Reverse transcription then yields an intron cDNA, whose free end is linked to the upstream DNA exon by an error-prone process that yields junctions similar to those formed by non-homologous end joining (NHEJ). Here, by using Drosophila melanogaster NHEJ mutants, we show that linear intron RNA retrohoming occurs by major Lig4-dependent and minor Lig4-independent mechanisms, which appear to be related to classical and alternate NHEJ, respectively. The DNA repair polymerase θ plays a crucial role in both pathways. Surprisingly, however, mutations in Ku70, which functions in capping chromosome ends during NHEJ, have only moderate, possibly indirect effects, suggesting that both Lig4 and the alternate end-joining ligase act in some retrohoming events independently of Ku. Another potential Lig4-independent mechanism, reverse transcriptase template switching from the intron RNA to the upstream exon DNA, occurs in vitro, but gives junctions differing from the majority in vivo. Our results show that group II introns can utilize cellular NHEJ enzymes for retromobility in higher organisms, possibly exploiting mechanisms that contribute to retrotransposition and mitigate DNA damage by resident retrotransposons. Additionally, our results reveal novel activities of group II intron reverse transcriptases, with implications for retrohoming mechanisms and potential biotechnological applications

    Tissue-Specific Target Analysis of Disease-Associated MicroRNAs in Human Signaling Pathways

    Get PDF
    MicroRNAs are a large class of post-transcriptional regulators that bind to the 3′ untranslated region of messenger RNAs. They play a critical role in many cellular processes and have been linked to the control of signal transduction pathways. Recent studies indicate that microRNAs can function as tumor suppressors or even as oncogenes when aberrantly expressed. For more general insights of disease-associated microRNAs, we analyzed their impact on human signaling pathways from two perspectives. On a global scale, we found a core set of signaling pathways with enriched tissue-specific microRNA targets across diseases. The function of these pathways reflects the affinity of microRNAs to regulate cellular processes associated with apoptosis, proliferation or development. Comparing cancer and non-cancer related microRNAs, we found no significant differences between both groups. To unveil the interaction and regulation of microRNAs on signaling pathways locally, we analyzed the cellular location and process type of disease-associated microRNA targets and proteins. While disease-associated proteins are highly enriched in extracellular components of the pathway, microRNA targets are preferentially located in the nucleus. Moreover, targets of disease-associated microRNAs preferentially exhibit an inhibitory effect within the pathways in contrast to disease proteins. Our analysis provides systematic insights into the interaction of disease-associated microRNAs and signaling pathways and uncovers differences in cellular locations and process types of microRNA targets and disease-associated proteins
    corecore