18 research outputs found

    Corneal Endothelial Cell Loss in Glaucoma and Glaucoma Surgery and the Utility of Management with Descemet Membrane Endothelial Keratoplasty (DMEK)

    Get PDF
    Publisher Copyright: © 2022 Neeru A Vallabh et al.The corneal endothelium has a crucial role in maintaining a clear and healthy cornea. Corneal endothelial cell loss occurs naturally with age; however, a diagnosis of glaucoma and surgical intervention for glaucoma can exacerbate a decline in cell number and impairment in morphology. In glaucoma, the mechanisms for this are not well understood and this accelerated cell loss can result in corneal decompensation. Given the high prevalence of glaucoma worldwide, this review aims to explore the abnormalities observed in the corneal endothelium in differing glaucoma phenotypes and glaucoma therapies (medical or surgical including with new generation microinvasive glaucoma surgeries). Descemet membrane endothelial keratoplasty (DMEK) is increasingly being used to manage corneal endothelial failure for glaucoma patients and we aim to review the recent literature evaluating the use of this technique in this clinical scenario.publishersversionPeer reviewe

    Corneal Endothelial Cell Loss in Glaucoma and Glaucoma Surgery and the Utility of Management with Descemet Membrane Endothelial Keratoplasty (DMEK)

    Get PDF
    The corneal endothelium has a crucial role in maintaining a clear and healthy cornea. Corneal endothelial cell loss occurs naturally with age; however, a diagnosis of glaucoma and surgical intervention for glaucoma can exacerbate a decline in cell number and impairment in morphology. In glaucoma, the mechanisms for this are not well understood, and this accelerated cell loss can result in corneal decompensation. Given the high prevalence of glaucoma worldwide, this review aims to explore the abnormalities observed in the corneal endothelium in differing glaucoma phenotypes and glaucoma therapies (medical or surgical, including with new generation microinvasive glaucoma surgeries). Descemet membrane endothelial keratoplasty (DMEK) is increasingly being used to manage corneal endothelial failure for glaucoma patients, and we aim to review the recent literature evaluating the use of this technique in this clinical scenario.</jats:p

    Information management for high content live cell imaging.

    Get PDF
    BACKGROUND: High content live cell imaging experiments are able to track the cellular localisation of labelled proteins in multiple live cells over a time course. Experiments using high content live cell imaging will generate multiple large datasets that are often stored in an ad-hoc manner. This hinders identification of previously gathered data that may be relevant to current analyses. Whilst solutions exist for managing image data, they are primarily concerned with storage and retrieval of the images themselves and not the data derived from the images. There is therefore a requirement for an information management solution that facilitates the indexing of experimental metadata and results of high content live cell imaging experiments. RESULTS: We have designed and implemented a data model and information management solution for the data gathered through high content live cell imaging experiments. Many of the experiments to be stored measure the translocation of fluorescently labelled proteins from cytoplasm to nucleus in individual cells. The functionality of this database has been enhanced by the addition of an algorithm that automatically annotates results of these experiments with the timings of translocations and periods of any oscillatory translocations as they are uploaded to the repository. Testing has shown the algorithm to perform well with a variety of previously unseen data. CONCLUSION: Our repository is a fully functional example of how high throughput imaging data may be effectively indexed and managed to address the requirements of end users. By implementing the automated analysis of experimental results, we have provided a clear impetus for individuals to ensure that their data forms part of that which is stored in the repository. Although focused on imaging, the solution provided is sufficiently generic to be applied to other functional proteomics and genomics experiments. The software is available from: fhttp://code.google.com/p/livecellim/RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Controlling drug release from non-aqueous environments: Moderating delivery from ocular silicone oil drug reservoirs to combat proliferative vitreoretinopathy

    Get PDF
    In a number of cases of retinal detachment, treatment may require the removal of the vitreous humour within the eye and replacement with silicone oil to aid healing of the retina. The insertion of silicone oil offers the opportunity to also deliver drugs to the inside of the eye; however, drug solubility in silicone oil is poor and release from this hydrophobic drug reservoir is not readily controlled. Here, we have designed a range of statistical graft copolymers that incorporate dimethylsiloxane and ethylene glycol repeat units within the side chains, allowing short chains of oligo(ethylene glycol) to be solubilised within silicone oil and provide hydrogen bond acceptor sites to interact with acid functional drug molecules. Our hypothesis included the potential for such interactions to be able to delay/control drug release and for polymer architecture and composition to play a role in the silicone oil miscibility of the targeted polymers. This strategy has been successfully demonstrated using both ibuprofen and all-trans retinoic acid; drugs with anti-inflammatory and anti-proliferation activity. After the copolymers were shown to be non-toxic to retinal pigment epithelial cells, studies of drug release using radiochemical approaches showed that the presence of 10 v/v% of a linear graft copolymer could extend ibuprofen release over three-fold (from 3 days to > 9 days) whilst the release of all-trans retinoic from the silicone oil phase was extended to > 72 days. These timescales are highly clinically relevant showing the potential to tune drug delivery during the healing process and offer an efficient means to improve patient outcomes
    corecore